

You Choose, We Do It

St. JOSEPH'S COLLEGE OF ENGINEERING

(An Autonomous Institution)

St. Joseph's Group of Institutions Jeppiaar Educational Trust

OMR, Chennai - 119.

DEPARTMENT OF CIVIL ENGINEERING

B.E. CIVIL ENGINEERING

CURRICULUM & SYLLABUS

(1st to 8th Semester)

under

REGULATIONS 2021

(Approved in the Second Board of Studies meeting held on 4th December 2021 and Academic Council Meeting held on 2nd March 2022)

You Choose, We Do It

St. 10SEPH'S COLLEGE OF ENGINEERING

(An Autonomous Institution)

St. Joseph's Group of Institutions Jeppiaar Educational Trust

OMR, Chennai - 119.

DEPARTMENT OF CIVIL ENGINEERING B.E. CIVIL ENGINEERING REGULATIONS – 2021 (CHOICE BASED CREDIT SYSTEM) CURRICULUM AND SYLLABI

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

- **PO:1 Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO:2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO:3 Design/development of solutions:** Design solution for complex engineering problems and design systems components or process that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO:4 Conduct investigations of complex problems:** Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO:5 Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO:6 The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO:7 Environmental and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
- **PO:8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO:9 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO:10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as , being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO:11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO:12 Life-Long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Engineering Graduates will be able to

PEO:1Graduates of the programme will apply principles of basic and engineering sciences in analysis, design and operation of Civil Engineering systems

PEO:2 Graduates of the programme will contribute to the development of sustainable Infrastructure for the betterment of society.

PEO:3 Graduates of the programme will engage in lifelong learning and adapt to changing professional and societal needs with focus on research & development and industry interaction.

PEO:4 Graduates of the programme will discharge their duties as professional Civil Engineers with quality and ethics.

PROGRAM SPECIFIC OBJECTIVES (PSOs)

PSO 1: The students graduating in Civil Engineering will have profound foundation in Mathematical, Scientific and Engineering domains necessary to achieve professional and productive excellence in technical and non-technical problem solving and analyzing engineering problems.

PSO 2: The students graduating in Civil Engineering will have the ability to Create, select, and apply appropriate techniques, resources, and modern engineering tools such as CAD, STAAD-Pro and GIS including prediction and modelling to complex Civil Engineering activities with an understanding of the limitations.

PSO 3: The students graduating in Civil Engineering will have the ability to Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage Civil Engineering projects and in multidisciplinary environments.

Vision of the Department

To educate the new generation Civil Engineers to meet the future technological needs by imparting sound technical knowledge and to improve professional leadership and management quality in public service.

Mission of the Department

- To enhance and enrich the technical knowledge in civil engineering through teaching-learning process.
- To educate the students about the significance of professional and ethical practices.
- To facilitate the understanding and implementation of innovative ideas through research and development.
- To develop personal competence among students which will improve their entrepreneurial and managerial skills.

CURRICULUM

SEMESTER I

S.No.	COURSE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEOI	RY				•			
1	HS1101	Communicative English (Common for all Branches of B.E. / B. Tech Programmes)	HSC	3	3	0	0	3
2	MA1102	Engineering Mathematics – I (Common for all Branches of B.E. / B. Tech Programmes)	BSC	4	4	0	0	4
3	PH1103	Engineering Physics (Common for all Branches of B.E. / B. Tech Programmes)	BSC	3	3	0	0	3
4	CY1104	Engineering Chemistry (Common for all Branches of B.E. / B. Tech Programmes)	BSC	3	3	0	0	3
5	GE1105	Problem Solving and Python Programming (Common for all Branches of B.E. / B. Tech Programmes)	ESC	3	3	0	0	3
6	GE1106	Engineering Graphics (Common for all Branches of B.E. / B. Tech Programmes)	ESC	6	2	0	4	4
PRAC	TICAL							
7	GE1107	Python Programming Laboratory (Common for all Branches of B.E. / B. Tech Programmes)	ESC	4	0	0	4	2
8	BS1108	Physics and Chemistry Laboratory (Common for all Branches of B.E. / B. Tech Programmes)	BSC	4	0	0	4	2
		Total		30	18	0	12	24

SEMESTER II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
THEO	RY							
1	HS1201	Professional English (Common for all Branches of B.E. / B. Tech Programmes)	HSC	3	3	0	0	3
2	MA1202	Engineering Mathematics -II (Common for all Branches of B.E. / B. Tech Programmes Except AI-DS& AI-ML)	BSC	4	4	0	0	4
3	PH1251	Physics for Civil Engineering	BSC	3	3	0	0	3
4	GE1204	Environmental Science and Engineering (Common for all Branches of B.E. / B. Tech Programmes)	HSC	3	3	0	0	3
5	BE1253	Basic Electrical and Electronics Engineering	ESC	3	3	0	0	3
6	GE1206	Engineering Mechanics (Common for Civil & Mechanical)	ESC	4	3	1	0	4
PRAC	TICAL							
7	GE1207	Engineering Practices Laboratory (Common for all Branches of B.E. / B. Tech Programmes)	ESC	4	0	0	4	2
8	CE1208	Computer aided drafting Laboratory	PCC	4	0	0	4	2
		Total		28	19	1	8	24

SEMESTER III

S.No.	COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY		L	Т	Р	С			
THEO	THEORY										
1	MA1301	Transforms and Partial Differential Equations	BSC	4	3	0	0	4			
2	CE1302	Engineering Geology and Construction Materials	PCC	3	3	0	0	3			
3	CE1303	Strength of Materials	PCC	3	3	0	0	3			
4	CE1304	Concrete Technology	PCC	3	3	0	0	3			
5	CE1305	Fluid Mechanics	PCC	3	3	0	0	3			
6	CE1306	Surveying	PCC	3	3	0	0	3			
PRAC	TICAL										
7	CE1307	Strength of Materials Laboratory	PCC	4	0	0	4	2			
8	CE1308	Surveying laboratory	PCC	4	0	0	4	2			
			27	18	0	8	23				

SEMESTER IV

S.No.	COURSE CODE	COURSE TITLE	CATEGORY CONTACT PERIOD		L	т	Р	С					
THEO	RY												
1	1 MA1455 Numerical Methods BSC 4 4 0 0 4												
2	CE1402	Water Supply Engineering	PCC	3	3	0	0	3					
3	CE1403	Highway Engineering	PCC	3	3	0	0	3					
4	CE1404	Applied Hydraulic Engineering	PCC	3	3	0	0	3					
5	CE1405	Structural Analysis – I	PCC	3	3	0	0	3					
6	CE1406	Geotechnical Engineering - I	PCC	3	3	0	0	3					
PRAC	TICAL												
7	CE1407	Advanced Surveying Laboratory	PCC	4	0	0	4	2					
8	CE1408	Hydraulic Engineering Laboratory	PCC	4	0	0	4	2					
9	HS1310	Professional Skills laboratory	EEC	1	0	0	1	1					
	Total				19	0	9	24					

SEMESTER V

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С			
THEO	THEORY										
1	1 CE1501 Structural Analysis – II PCC 3 3 0 0 3										
2	CE1502	Geotechnical Engineering - II	PCC	3	3	0	0	3			
3	CE1503	Railways, Airports and Harbour Engineering	PCC	3	3	0	0	3			
4	CE1504	Wastewater Engineering	PCC	3	3	0	0	3			
5	CE1505	Design of Reinforced Concrete Elements	PCC	3	3	0	0	3			
6		Professional Elective – I	PEC	3	3	0	0	3			
PRAC	TICAL										
7	CE1507	Environmental Engineering Laboratory	PCC	4	0	0	4	2			
8	CE1508	Soil Mechanics Laboratory	PCC	4	0	0	4	2			
		Total		26	18	0	8	22			

SEMESTER VI

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEOI	RY							
1	CE1601	Irrigation Engineering	PCC	3	3	0	0	3
2	CE1602	Construction Management	PCC	3	3	0	0	3
3	CE1603	Design of Steel Structures	PCC	3	3	0	0	3
4		Professional Elective – II	PEC	3	3	0	0	3
5		Professional Elective – III	PEC	3	3	0	0	3
6		Open Elective – I	OEC	3	3	0	0	3
PRAC	TICAL							
7	CE1607	Construction Materials and Highway Engineering Laboratory	PCC	4	0	0	4	2
8	CE1608	Computer aided Structural Drawing Laboratory	PCC	4	0	0	4	2
		26	18	0	8	22		

SEMESTER VII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С		
THEO	RY									
1	CE1701	Estimation, Costing and Valuation	PCC	3	3	0	0	3		
2	CE1702	Aseismic Design of Structures	PCC	3	3	0	0	3		
3		Open Elective – II	OEC	3	3	0	0	3		
4		Professional Elective – IV	PEC	3	3	0	0	3		
5		Professional Elective – V	PEC	3	3	0	0	3		
PRAC	TICAL									
6	CE1707	Summer Internship / Summer training (4 weeks)	IPT	0	0	0	0	2		
7	CE1708	Irrigation and Environmental Engineering	PCC	4	0	0	4	2		
8	CE1709	Design Project	EEC	4	0	0	4	2		
MAND	MANDATORY COURSE									
9	AD100X	Audit Course	AC	2	2	0	0	0		
		Total		25	17	0	8	21		

SEMESTER VIII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1		Professional Elective – VI	PEC	3	3	0	0	3
2		Professional Elective – VII	PEC	3	3	0	0	3
PRAC	TICAL							
3	CE1807	Project Work	EEC	20	0	0	20	10
	Total				6	0	20	16

COURSE CREDITS - SEMESTER WISE

Branch	ı	II	III	IV	V	VI	VII	VIII	TOTAL
Civil	24	24	23	24	22	22	21	16	176

LIST OF PROFESSIONAL ELECTIVES

PROFESSIONAL ELECTIVE - I

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1001	Remote Sensing	PEC	3	3	0	0	3
2	CE1002	Geographic Information System	PEC	3	3	0	0	3
3	CE1003	Geo informatics Applications for Civil Engineers	PEC	3	3	0	0	3
4	CE1004	Advanced Surveying Techniques	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1005	Air Pollution and Control Engineering	PEC	3	3	0	0	3
2	CE1006	Environmental and Social Impact Assessment	PEC	3	3	0	0	3
3	CE1007	Industrial Wastewater Treatment	PEC	3	3	0	0	3
4	CE1008	Municipal Solid Waste Management	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - III

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1009	Hydrology and Water Resources Engineering	PEC	3	3	0	0	3
2	CE1010	Integrated Water Resources Management	PEC	3	3	0	0	3
3	CE1011	Groundwater Engineering	PEC	3	3	0	0	3
4	CE1012	Water Resources Systems Engineering	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - IV

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1013	Pavement Engineering	PEC	3	3	0	0	3
2	CE1014	Traffic Engineering and Management	PEC	3	3	0	0	3
3	CE1015	Transportation Planning and Systems	PEC	3	3	0	0	3
4	CE1016	Urban Planning and Development	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - V

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1017	Design of Plate and Shell Structures	PEC	3	3	0	0	3
2	CE1018	Prestressed Concrete Structures	PEC	3	3	0	0	3
3	CE1019	Industrial Structures	PEC	3	3	0	0	3
4	CE1020	Maintenance, Repair and Rehabilitation of Structures	PEC	3	3	0	0	3
5	CE1021	Powerplant Structures	PEC	3	3	0	0	3
6	CE1022	Prefabricated Structures	PEC	3	3	0	0	3
7	CE1023	Tall Structures	PEC	3	3	0	0	3
8	CE1024	Non-Destructive Testing and its applications	PEC	3	3	0	0	3
9	CE 1025	Disaster management	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - VI

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1026	Geo-Environmental Engineering	PEC	3	3	0	0	3
2	CE1027	Ground Improvement Techniques	PEC	3	3	0	0	3
3	CE1028	Soil Dynamics and Machine Foundations	PEC	3	3	0	0	3
4	CE1029	Rock Mechanics	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - VII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CE1030	Coastal Engineering	PEC	3	3	0	0	3
2	CE1031	Coastal Zone Management	PEC	3	3	0	0	3
3	CE1032	Global Climate Change	PEC	3	3	0	0	3
4	CE1033	Climate Change and Vulnerability Assessment	PEC	3	3	0	0	3

LIST OF OPEN ELECTIVES

OPEN ELECTIVE - I

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	OME103	Energy Conservation in Thermal and Electrical Utilities	OEC	3	3	0	0	3
2	OCH103	Environment and Agriculture	OEC	3	3	0	0	3
3	OEE102	Renewable Energy Sources	OEC	3	3	0	0	3
4	OEI101	Sensors and Transducers	OEC	3	3	0	0	3
5	OME107	Vibration and Noise Control	OEC	3	3	0	0	3

OPEN ELECTIVE - II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	OCH104	Textile effluent treatments	OEC	3	3	0	0	3
2	OEI102	Robotics	OEC	3	3	0	0	3
3	OME104	Industrial Safety Engineering	OEC	3	3	0	0	3
4	OCS101	Introduction to C Programming	OEC	3	3	0	0	3
5	OME106	Testing of Materials	OEC	3	3	0	0	3

AUDIT COURSE

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	AD1001	Constitution of India	AC	2	2	0	0	0
2	AD1002	Value Education	AC	2	2	0	0	0
3	AD1003	Pedagogy Studies	AC	2	2	0	0	0
4	AD1004	Stress Management by Yoga	AC	2	2	0	0	0
5	AD1005	Personality Development Through Life Enlightenment Skills	AC	2	2	0	0	0
6	AD1006	Unnat Bharat Abhiyan	AC	2	2	0	0	0
7	AD1007	Essence of Indian Knowledge Tradition	AC	2	2	0	0	0
8	AD1008	Sanga Tamil Literature Appreciation	AC	2	2	0	0	0

LIST OF OPEN ELECTIVES OFFERED TO OTHER DEPARTMENTS

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	C
1	OCE101	Air Pollution and Control	OEC	3	3	0	0	3
2	OCE102	Introduction to Geographic Information System	OEC	3	3	0	0	3
3	OCE103	Environmental impact assessment	OEC	3	3	0	0	3
4	OCE104	Green Building Design	OEC	3	3	0	0	3

(Common for all Branches of B.E. / B. Tech Programmes) 3 0 0 0 OBJECTIVES ❖ To develop the basic reading and writing skills of first year engineering and technologistudents.	3
To develop the basic reading and writing skills of first year engineering and technological	
students.	ogy
To help learners develop their listening skills, which will, enable them listen to lectures a	and
comprehend them by asking questions; seeking clarifications.	
To help learners develop their speaking skills and speak fluently in real contexts.	
To help learners develop vocabulary of a general kind by developing their reading skills.	
UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS	9
Reading – critical reading – finding key information in a given text – shifting facts from	
opinions - Writing - autobiographical writing - developing hints. Listening- short texts- short	
formal and informal conversations. Speaking- basics in speaking - introducing oneself -	01
exchanging personal information- speaking on given topics & situations Language	וט
development- voices- Wh- Questions- asking and answering-yes or no questions- parts of	
speech. Vocabulary development prefixes- suffixes- articles - Polite Expressions.	
UNIT II GENERAL READING AND FREE WRITING	9
Reading: Short narratives and descriptions from newspapers (including dialogues and	
conversations; Reading Comprehension Texts with varied question types - Writing -	
paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using	
some suggested vocabulary and structures –. Listening - long texts - TED talks - extensive Co	02
speech on current affairs and discussions Speaking – describing a simple process –	
asking and answering questions - Language development - prepositions, clauses.	
Vocabulary development- guessing meanings of words in context –use of sequence words.	
UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT	9
Reading- short texts and longer passages (close reading) & making a critical analysis of the	
given text Writing – types of paragraph and writing essays – rearrangement of jumbled	
sentences. Listening: Listening to ted talks and long speeches for comprehension. Speaking-	03
role plays - asking about routine actions and expressing opinions. Language development-	US
degrees of comparison- pronouns- Direct vs. Indirect Questions. Vocabulary development -	
idioms and phrases- cause & effect expressions, adverbs.	
UNIT IV READING AND LANGUAGE DEVELOPMENT	9
Reading- comprehension-reading longer texts- reading different types of texts- magazines.	
Writing- letter writing, informal or personal letters-e-mails-conventions of personal email-	
Listening: Listening comprehension (IELTS, TOEFL and others). Speaking -Speaking about	04
friends/places/hobbies - Language development- Tenses- simple present-simple past- present	J 4
continuous and past continuous- conditionals - if, unless, in case, when and others	
Vocabulary development- synonyms-antonyms- Single word substitutes- Collocations.	
UNIT V EXTENDED WRITING	9
Reading: Reading for comparisons and contrast and other deeper levels of meaning –Writing-	
brainstorming -writing short essays - developing an outline- identifying main and subordinate	
ideas- dialogue writing- Listening - popular speeches and presentations - Speaking - Co	O5
impromptu speeches & debates Language development-modal verbs- present/ past perfect	
tanan Manahadan darahamant Dhari I. I. C. I. I. C. I. I. C. I.	
tense - Vocabulary development-Phrasal verbs- fixed and semi-fixed expressions.	DS

- Board of Editors. Using English A Course book for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020
- 2. Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015.
- 3. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCE BOOKS

- 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. Cengage Learning ,USA: 2007
- 3. Redston, Chris &Gillies Cunningham Face 2 Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013
- 6. John Eastwood et al : Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. .

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- CO2 Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- CO3 Read different genres of texts adopting various reading strategies.
- CO4 | Listen/view and comprehend different spoken discourses/excerpts in different accents
- CO5 Identify topics and formulate questions for productive inquiry

COs	PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P											PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	2	3	-	-	-	-	1
CO2	-	1	-	2	-	-	-	-	-	3	-	-	1	1	1
СОЗ	-	2	-	3	-	-	-	-	-	2	-	-	1	1	1
CO4	-	-	-	-	-	-	-	-	2	2	-	-	1	-	1
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	1	1

MA1102	ENGINEERING MATHEMATICS –I	L	Т	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	4	0	0	4
OBJECTIVES					

- ❖ The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus.
- ❖ The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling the engineering problems mathematically and obtaining solutions.
- Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering.
- ❖ This is a foundation course of Single Variable and multivariable calculus plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

<u> </u>	origination disciplinates.	
UNIT I	MATRICES	12
Eigenvalues a	and Eigenvectors of a real matrix – Characteristic equation – Properties of	
Eigenvalues a	and Eigenvectors – Cayley-Hamilton theorem – Diagonalization of matrices –	
Reduction of	a quadratic form to canonical form by orthogonal transformation - Nature of	CO1
quadratic form	S	
UNIT II	CALCULUS OF ONE VARIABLE	12
Limit of a fund	tion - Continuity - Derivatives - Differentiation rules - Interval of increasing and	
decreasing fur	nctions – Maxima and Minima - Intervals of concavity and convexity.	CO2
UNIT III	CALCULUS OF SEVERAL VARIABLES	12
Partial differer	ntiation – Homogeneous functions and Euler's theorem – Total derivative –	
Change of var	riables – Jacobians – Partial differentiation of implicit functions – Taylor's series	
for functions o	f two variables – Maxima and minima of functions of two variables – Lagrange's	CO3
method of und	etermined multipliers.	
UNIT IV	INTEGRAL CALCULUS	12
Definite and Ir	ndefinite integrals - Substitution rule - Techniques of Integration - Integration by	
parts, Trigono	metric integrals, Trigonometric substitutions, Integration of rational functions by	CO4
partial fraction	, Integration of irrational functions - Improper integrals.	
UNIT V	MULTIPLE INTEGRALS	12
Double integra	als – Change of order of integration – Double integrals in polar coordinates –	
Area enclosed	d by plane curves – Change of variables from Cartesian to polar in double	CO5
integrals-Triple	e integrals – Volume of solids	
	TOTAL : 60 PER	IODS

- 1. Grewal B.S., Higher Engineering Mathematics , Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi,2015. [For Units I & III Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 7.4 and 7.8].

REFERENCE BOOKS

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., —Advanced Engineering MathematicsII, Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Narayanan, S. and Manicavachagom Pillai, T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. T. Veerarajan. Engineering Mathematics I, McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Have a clear idea of matrix algebra pertaining Eigenvalues and Eigenvectors in addition
	dealing with quadratic forms.
	Understand the concept of limit of a function and apply the same to deal with continuity and
CO2	derivative of a given function. Apply differentiation to solve maxima and minima problems,
	which are related to real world problems.
CO3	Have the idea of extension of a function of one variable to several variables. Multivariable
COS	functions of real variables are inevitable in engineering.
	Understand the concept of integration through fundamental theorem of calculus. Also acquire
CO4	skills to evaluate the integrals using the techniques of substitution, partial fraction and
	integration by parts along with the knowledge of improper integrals.
COF	Do double and triple integration so that they can handle integrals of higher order which are
CO5	applied in engineering field.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	2	3	-	-	3	2	3	3	1	2	1
CO2	3	3	3	2	2	1	-	-	-	-	1	2	1	-	1
CO3	3	3	3	2	2	1	-	-	-	-	1	2	2	1	1
CO4	3	3	3	2	2	1	-	-	-	-	1	2	1	1	1
CO5	3	3	3	2	1	1	-	-	-	-	1	2	2	2	2

	ENGINEERING PHYSICS	L	Т	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3
OBJECTIVES					
	te the students to understand about the elastic property and stress strain	•	-		
	cate the students about principle of laser and its role in optical fibers and	its a	appl	icati	ons
	sors and communication.				
	th the students about the heat transfer through solids and liquids.				
	icate the students about the quantum concepts and its use to expla	aın	biac	K D	ody
	n, Compton effect, tunnelling electron microscopy and its applications.		ام مرم		
	ke the students to understand the importance of various crystal structur	res a	anu	van	ous
UNIT I	techniques. PROPERTIES OF MATTER				9
	ress-strain diagram and its uses - factors affecting elastic modulus and	d to	neilo	. 1	9
•	sional stress and deformations – twisting couple - torsion pendulum: the				
•	bending of beams - bending moment – cantilever: theory and exper	-			01
•	on-uniform bending: theory and experiment – Practical applications of mo			1	,01
	ped girders - stress due to bending in beams.	, a a i c			
UNIT II	LASER AND FIBER OPTICS				9
	lation of energy levels, Einstein's A and B coefficients derivation – r	.esu	nant	. T	
	amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homo				
• •	ction – Industrial and medical applications of Laser– Fiber optics: p	•			
•	rture and acceptance angle - types of optical fibres (material, refractive		•		02
•	es associated with optical fibers – Fabrication of Optical fiber-Double				<i></i>
	ptic sensors: pressure and displacement-Industrial and medical applica				
	ndoscopy-Fiber optic communication system.				
UNIT III	THERMAL PHYSICS				
	I DERIVIAL PRI SICS				9
		imet	tallic	;	9
Transfer of hea	at energy – thermal expansion of solids and liquids – expansion joints - b				9
Transfer of hea		the	rmal	ı	<u> </u>
Transfer of hea strips - therma conductivity -F	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids –	the	rmal ction		<u> </u>
Transfer of heastrips - thermal conductivity -F through comp	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - cor	the ndud latic	rmal ction on –		<u> </u>
Transfer of hea strips - therma conductivity –F through comp	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat– thermal insu	the ndud latic	rmal ction on –		CO3
Transfer of heastrips - thermal conductivity —F through compapplications: he UNIT IV	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insues eat exchangers, refrigerators, oven, Induction furnace and solar water he	the ndud latic	rmal ction on –		03
Transfer of heastrips - thermal conductivity – Fithrough compapplications: he UNIT IV Black body race	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insue eat exchangers, refrigerators, oven, Induction furnace and solar water he	the nduction lation eater	rmal ction on – rs. ental		CO3
Transfer of heastrips - thermal conductivity – Ithrough compapplications: he UNIT IV Black body race verification – verificat	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS diation – Planck's theory (derivation) – Compton effect: theory and expe	the nduction lation eater erime	rmal ction on – rs. ental d its	-	9
Transfer of heastrips - thermal conductivity —F through compaphications: he UNIT IV Black body rac verification — verification — verification physical signification	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insure eat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS Diation – Planck's theory (derivation) – Compton effect: theory and expensive particle duality – electron diffraction – concept of wave function	the nduction lation eater erime and pendon	rmal ction on – s. ental d its		9
Transfer of heastrips - thermal conductivity — Ithrough compapplications: he UNIT IV Black body race verification — Verificat	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS diation – Planck's theory (derivation) – Compton effect: theory and expensive particle duality – electron diffraction – concept of wave function to cance – Schrödinger's wave equation – time independent and time defeated.	the nduction lation eater erime and pendon	rmal ction on – s. ental d its		9
Transfer of heastrips - thermal conductivity — Ithrough compapplications: he will be a supplication of the conductivity — Ithrough compapplications: he will be a supplication — will be a supplicat	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - conound media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS diation – Planck's theory (derivation) – Compton effect: theory and expensive particle duality – electron diffraction – concept of wave function france – Schrödinger's wave equation – time independent and time departicle in a one-dimensional rigid box – Electron microscope-tures.	the nduction lation eater erime and pendon	rmal ction on – s. ental d its		9
Transfer of heastrips - thermal conductivity — Fithrough compapplications: he will be the conductivity — Fithrough compapplications: he will be the conductivity — Fithrough compapplications — verification — verification — verifications — (qualitative) - seconductivity — Supplies — verifications — veri	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - conound media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS diation – Planck's theory (derivation) – Compton effect: theory and expensave particle duality – electron diffraction – concept of wave function france – Schrödinger's wave equation – time independent and time desparticle in a one-dimensional rigid box – Electron microscope-tusticanning tunnelling microscope-Applications of electron microscopy.	the nduction latic eater erime and pen-	rmal ction on – rs. ental d its dent		9
Transfer of heastrips - thermal conductivity — Fithrough compapplications: he will be the work of the will be will be the will	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - concurred media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS diation – Planck's theory (derivation) – Compton effect: theory and expensive particle duality – electron diffraction – concept of wave function acance – Schrödinger's wave equation – time independent and time departicle in a one-dimensional rigid box – Electron microscope-tusticanning tunnelling microscope-Applications of electron microscopy. CRYSTAL PHYSICS	the nduction in the state of th	rmal ction on – rs. ental d its dent elling		9
Transfer of heastrips - thermal conductivity — Ithrough compapplications: he UNIT IV Black body race verification — verification — verifications — (qualitative) - second UNIT V Single crystallisystems, Brave	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - concound media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water he QUANTUM PHYSICS diation – Planck's theory (derivation) – Compton effect: theory and expensave particle duality – electron diffraction – concept of wave function cance – Schrödinger's wave equation – time independent and time departicle in a one-dimensional rigid box – Electron microscope-tustical canning tunnelling microscope-Applications of electron microscopy. CRYSTAL PHYSICS ne, polycrystalline and amorphous materials – single crystals: unit cell	the ndud latic ater and pendunne	rmal ction on – rs. ental dental dental dental dental dental		9
Transfer of heastrips - thermal conductivity — Fithrough compaphications: he was applications: he was application — verification — verificati	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and experiment - concept of water heat exchangers, refrigerators, oven, Induction furnace and experiment - concept of water heat exchangers, refrigerators, oven, Induction furnace and experiment - concept of water heat exchangers, refrigerators, oven, Induction furnace and experiment - concept of water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, ove	the nduction in the state of th	rmal ction on – rs. ental d its dent elling		9
Transfer of heastrips - thermal conductivity — Fithrough compaphications: he will be applications: he will be application of the	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat- thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and experiment - coround flow of heat—thermal insurators	the ndud latic eater eater end pendunne	rmal ction on – rs. ental dental dental dental dental dental dental dental dental dental dental dental dental		9 9 9 9 0 0 5 0 5
Transfer of heastrips - thermal conductivity — Fithrough compapplications: he was applications: he was applications of the was application of the was applications of the was	at energy – thermal expansion of solids and liquids – expansion joints - bal conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - coround media (series and parallel)-Radial flow of heat— thermal insureat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction furnace and experiment - coround flow of heat— thermal insuffice. CRYSTAL PHYSICS The provided Hamber of School of the exchangers and parallel)-Radial flow of heat— thermal exchangers and solar water heat exchangers, refrigerators, oven, Induction furnace and experiment - coround flow of heat— thermal insuffice. CRYSTAL PHYSICS The provided Hamber of School of the exchangers and solar water heat exchangers, refrigerators, oven, Induction furnace and solar water heat exchangers, refrigerators, oven, Induction flow of heat— thermal insuffice water heat ex	the ndud latic eater eater end pendunne	rmal ction on – rs. ental dental dental dental dental dental dental dental dental dental dental dental dental		9

- 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2019.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2019.

REFERENCE BOOKS

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.
- 3. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman, 2007.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Gain knowledge on the basics of properties of matter and its applications,
CO2	Acquire knowledge on the concepts of waves and optical devices and their applications in fibre
002	optics.
CO3	Have adequate knowledge on the concepts of thermal properties of materials and their
003	applications in expansion joints and heat exchangers.
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications in
004	tunneling microscopes, and
CO5	Understand the basics of crystals, their structures and different crystal growth techniques.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2

	ENGINEERING CHEMISTRY	L	Т	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3
OBJECTIVES					
Principl	es of water characterization and treatment for industrial purposes.				
Principl	es and applications of surface chemistry and catalysis.				
•	ule and various types of alloys.				
	types of fuels, applications and combustion.				
	tional and non–conventional energy sources and energy storage device.				
UNIT I	WATER AND ITS TREATMENT				9
	ater - Types - Expression of hardness - Units - Estimation of hard	nes	s bv		
	 Numerical problems on EDTA method – Boiler troubles (scale and 		•		
	ement , boiler corrosion, priming and foaming) – Treatment of boiler fee		•		
	atment (carbonate, phosphate, colloidal, sodium aluminate and			1 (:	01
	External treatment – Ion exchange process, Zeolite process – Desalir		•		
· ·	by reverse Osmosis.	_			
UNIT II	SURFACE CHEMISTRY AND CATALYSIS			1	9
Surface chem	stry: Types of adsorption – Adsorption of gases on solids – Adsorption of	of so	olute		
	 Adsorption isotherms – Freundlich's adsorption isotherm – Lar 				
	therm – Kinetics of uni-molecular surface reactions – Adsorp	•			
chromatograph	y – Applications of adsorption in pollution abatement using PAC.			С	02
Catalysis: Cat	alyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor	ning	and		
catalytic promo	ters - Industrial applications of catalysts - Catalytic convertor - Auto ca	talys	sis –		
Enzyme cataly	sis – Michaelis-Menten equation.				
UNIT III	PHASE RULE AND ALLOYS				9
Phase rule: In	roduction – Definition of terms with examples – One component system	– W	ater		
system - Red	uced phase rule - Thermal analysis and cooling curves - Two cor	npo	nent		
systems – Lea	d-silver system – Pattinson process.				О3
Alloys: Introdu	ction - Definition - Properties of alloys - Significance of alloying - Fo	unct	ions		U3
and effect of a	loying elements - Nichrome, Alnico, Stainless steel (18/8) - Heat treat	tme	nt of		
steel - Non-fe	rous alloys – Brass and bronze.				
UNIT IV	FUELS AND COMBUSTION				9
Fuels: Introduc	tion – classification of fuels – Comparison of solid, liquid, gaseous fuels	5 – (Coal		
	and the antique of a read of the set of the	-			
- Analysis of	coal (proximate and ultimate) Carbonization - Manufacture of meta	llur	_		
Analysis of coke (Otto Ho	ffmann method) – Petroleum – Cracking – Manufacture of syntheti	ıllur c p	etrol		
Analysis of coke (Otto Hot)(Bergius procedure)	ffmann method) – Petroleum – Cracking – Manufacture of syntheti ss, Fischer Tropsch Process) – Knocking – Octane number – Dies	ıllur c p sel d	etrol oil –		
Analysis of coke (Otto Hot)(Bergius procedure)Cetane number	ffmann method) – Petroleum – Cracking – Manufacture of syntheti ss, Fischer Tropsch Process) – Knocking – Octane number – Dies – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG)	ıllur c p sel d	etrol oil –		O 4
 Analysis of coke (Otto Hot (Bergius procedure number alcohol and bid 	ffmann method) – Petroleum – Cracking – Manufacture of synthetiss, Fischer Tropsch Process) – Knocking – Octane number – Diesch – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) diesel.	allurg c p sel d - Po	etrol oil – ower		O 4
 Analysis of coke (Otto Hot (Bergius procedure number alcohol and bio Combustion of the co	ffmann method) – Petroleum – Cracking – Manufacture of synthetiss, Fischer Tropsch Process) – Knocking – Octane number – Dies – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. If fuels: Introduction – Calorific value – Higher and lower calorific v	alluro c p sel o – Po ralue	etrol oil – ower	С	O4
 Analysis of coke (Otto Hot (Bergius procedure number alcohol and bid Combustion of Theoretical care 	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Diese – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. of fuels: Introduction – Calorific value – Higher and lower calorific value of calorific value – Ignition temperature – Spontaneous	alluro c p sel o – Po ralue	etrol oil – ower	С	O4
 Analysis of coke (Otto Hotel) (Bergius procedured number alcohol and bid Combustion (Theoretical catemperature – 	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Dieser – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) - diesel. If fuels: Introduction – Calorific value – Higher and lower calorific value of calorific value – Ignition temperature – Spontaneous Explosive range – Flue gas analysis by Orsat Method.	allurg c p sel d – Po ralue ign	etrol oil – ower	С	
 Analysis of coke (Otto Hoto) (Bergius proceder) Cetane number alcohol and biodice Combustion of Theoretical categoristics UNIT V 	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Dieser – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. of fuels: Introduction – Calorific value – Higher and lower calorific valuation of calorific value – Ignition temperature – Spontaneous Explosive range – Flue gas analysis by Orsat Method. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICE.	allurg c p sel d – Po ralue ign	etrol oil – ower es – ition	С	O4 9
 Analysis of coke (Otto Hotel) (Bergius procedured and bid alcohol and bid Combustion of Theoretical catemperature – UNIT V Nuclear energical 	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Diese – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. of fuels: Introduction – Calorific value – Higher and lower calorific valuation of calorific value – Ignition temperature – Spontaneous Explosive range – Flue gas analysis by Orsat Method. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICE / – Fission and fusion reactions – Differences – Chain reactions –	allurg c p sel d - Po ralue ign ES	etrol pil – pwer es – ition	С	
 Analysis of coke (Otto Hoto) (Bergius proceder) Cetane number alcohol and biodice Combustion of Theoretical catemperature – UNIT V Nuclear energy reactors – Class 	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Diese – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. Introduction – Calorific value – Higher and lower calorific valuation of calorific value – Ignition temperature – Spontaneous Explosive range – Flue gas analysis by Orsat Method. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVIC (7 – Fission and fusion reactions – Differences – Chain reactions – ssification of reactors – Light water nuclear reactor for power gene	c p sel c Pc ralue ign ES Nuc	etrol oil – ower es – ition clear	С	9
 Analysis of coke (Otto Hoto) (Bergius proceded) Cetane number alcohol and biodice Combustion of theoretical catemperature – UNIT V Nuclear energy reactors – Class Breeder reactors 	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Dieser – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. of fuels: Introduction – Calorific value – Higher and lower calorific valuation of calorific value – Ignition temperature – Spontaneous Explosive range – Flue gas analysis by Orsat Method. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICATION OF TRACE DEVICATION OF TRACE DEVICATION OF TRACE OF TRACES – Chain reactions – sification of reactors – Light water nuclear reactor for power general contents – Solar energy conversion – Solar cells – Wind energy – Fuel	c p sel c - Pc ralue ign ES Nuc ratic	etroloil — ower es — ition clear on —	С	
 Analysis of coke (Otto Hoto) (Bergius proceded) Cetane number alcohol and biodice Combustion of Theoretical catemperature – UNIT V Nuclear energy reactors – Class Breeder reactors Hydrogen-oxygen 	ffmann method) — Petroleum — Cracking — Manufacture of synthetics, Fischer Tropsch Process) — Knocking — Octane number — Diest — Compressed natural gas (CNG) — Liquefied petroleum gases (LPG) — diesel. Introduction — Calorific value — Higher and lower calorific valuation of calorific value — Ignition temperature — Spontaneous Explosive range — Flue gas analysis by Orsat Method. NON—CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICATION — Procession — Differences — Chain reactions — Sification of reactors — Light water nuclear reactor for power generation — Solar energy conversion — Solar cells — Wind energy — Fuel en fuel cell . Batteries — Types of batteries — Alkaline batteries — Le	c p sel c - Pc ralue ign ES Nuc ratic	etroloil — ower es — ition clear on —	С	9
 Analysis of coke (Otto Hoto) (Bergius proceder) Cetane number alcohol and biodice of the combustion of the comb	ffmann method) – Petroleum – Cracking – Manufacture of synthetics, Fischer Tropsch Process) – Knocking – Octane number – Dieser – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – diesel. of fuels: Introduction – Calorific value – Higher and lower calorific valuation of calorific value – Ignition temperature – Spontaneous Explosive range – Flue gas analysis by Orsat Method. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICATION OF TRACE DEVICATION OF TRACE DEVICATION OF TRACE OF TRACES – Chain reactions – sification of reactors – Light water nuclear reactor for power general contents – Solar energy conversion – Solar cells – Wind energy – Fuel	e posel of p	etroloil – es – ition clear n – ls – acid,	С	9 O5

- 1. P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed. Dhanpat Rai Pub. Co., New Delhi,(2015).
- 2. S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2020).
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India (P) Ltd. New Delhi, (2018).
- 4. P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company (P) Ltd. Chennai, (2009).

REFERENCE BOOKS

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. Prasanta Rath, "Engineering Chemistry", Cengage Learning India (P) Ltd., Delhi, (2015).
- 4. Shikha Agarwal, "Engineering Chemistry–Fundamentals and Applications", Cambridge University Press, Delhi, (2015).
- 5. A. Pahari, B. Chauhan, "Engineering Chemistry", Firewall Media., New Delhi., (2010).
- 6. Sheik Mideen., Engineering Chemistry, Airwalk Publications, Chennai (2018).

COURSE OUTCOMES

Upon completion of the course, students will be able to

Opon	completion of the course, students will be used to
CO1	Able to understand impurities in industrial water, boiler troubles, internal and external treatment
	methods of purifying water.
CO2	Able to understand concepts of absorption, adsorption, adsorption isotherms, application of
002	adsorption for pollution abatement, catalysis and enzyme kinetics.
	Able to recognize significance of alloying, functions of alloying elements and types of alloys,
CO3	uses of alloys. They should be acquainted with phase rule and reduced phase and its
	applications in alloying.
CO4	Able to identify various types of fuels, properties, uses and analysis of fuels. They should be
004	able to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.
	Able to understand conventional, non-conventional energy sources, nuclear fission and fusion,
CO5	power generation by nuclear reactor, wind, solar energy and preparation, uses of various
	batteries.

COs				PRO	OGRA	W OL	JTCO	MES	(POs)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	1	2	
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1	1	
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	1	2	
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1	2	
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2	3	

GE1105	PROBLEM SOLVING AND PYTHON PROGRAMMING L T	Р	С
	(Common for all branches of B.E. / B. Tech Programmes) 3 0	0	3
OBJECTIVES	3		
To kno	w the basics of algorithmic problem solving		
To write	te simple python programs		
To dev	elop python program by using control structures and functions		
To use	python predefined data structures		
To write	te file-based program		
UNIT I	ALGORITHMIC PROBLEM SOLVING		,
Algorithms, B	uilding blocks of algorithms: statements, state, control flow, functions, Notation:		
pseudo code	e, flow chart, programming language, Algorithmic problem solving: Basic		
algorithms, fl	owcharts and pseudocode for sequential, decision processing and iterative	С	01
processing st	rategies, Illustrative problems: find minimum in a list, insert a card in a list of		
sorted cards,	guess an integer number in a range, Towers of Hanoi.		
UNIT II	INTRODUCTION TO PYTHON		9
Python Introd	uction, Technical Strength of Python, Python interpreter and interactive mode,		
Introduction to	o colab , pycharm and jupyter idle(s) ,Values and types: int, float, boolean, string,		
and list; Built-	in data types, variables, Literals, Constants, statements, Operators: Assignment,	С	02
Arithmetic, Re	elational, Logical, Bitwise operators and their precedence, Expressions, tuple		
assignment, A	accepting input from Console, printing statements, Simple Python programs.		
UNIT III	CONTROL FLOW, FUNCTIONS AND STRINGS		
Conditionals:	Boolean values and operators, conditional (if), alternative (if-else), chained		
conditional (if	-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue,		
and else; Mod	dules and Functions: function definition and use, flow of execution, parameters		
and argumen	ats, local and global scope, return values, function composition, recursion.	С	0
Strings: string	slices, immutability, string functions and methods, string module; Illustrative		
programs: squ	uare root, gcd, exponentiation, sum an array of numbers, linear search, binary		
search.			
UNIT IV	LISTS, TUPLES, DICTIONARIES		,
Lists: Definin	g list and list slicing, list operations, list slices, list methods, list loop, list		
Manipulation,	mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuples: tuple		
assignment, t	uple as return value, tuple Manipulation; Dictionaries: operations and methods;	С	04
advanced list	processing - list comprehension; Illustrative programs: selection sort, insertion		
sort, merge so	ort, histogram.		
UNIT V	FILES, MODULES, PACKAGES		9
Files and exce	l eption: Concept of Files, Text Files; File opening in various modes and closing of		
	Operators, Reading from a file, Writing onto a file, File functions- open(), close(),		
	e(), readlines(), write(), writelines(), tell(), seek(), Command Line arguments; Errors	С	O!
•	ns: handling exceptions; modules, packages; introduction to numpy, matplotlib.		
- 1			
Illustrative pro	grams: word count, copy a file.		

- Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- 2. Guido van Rossum and Fred L. Drake Jr, An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.
- 3. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019.

REFERENCE BOOKS

- 1. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, —Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd.,, 2015.
- 4. Kenneth A. Lambert, —Fundamentals of Python: First ProgramsII, CENGAGE Learning, 2012.
- 5. Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Develop algorithmic solutions to simple computational problems
CO2	Develop simple console application in python
CO3	Develop python program by applying control structure and decompose program into functions.
CO4	Represent compound data using python lists, tuples, and dictionaries.
CO5	Read and write data from/to files in Python.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3

	ENGINEERING GRAPHICS L	T	Р	С
	(Common for all branches of B.E. / B. Tech Programmes) 2	0	4	4
OBJECTIVES		[
To deve	elop in students, graphic skills for communication of concepts, ideas and	des	sign	of
Enginee	ering products			
To expo	se them to existing national standards related to technical drawings.			
CONCEPTS A	ND CONVENTIONS (Not for Examination)			1
Importance of	graphics in engineering applications - Use of drafting instruments - I	BIS		
conventions an	nd specifications - Size, layout and folding of drawing sheets - Lettering a	and		
dimensioning.				
UNIT I	PLANE CURVES AND FREEHAND SKETCHING		7-	-12
Basic Geometr	l ical constructions, Curves used in engineering practices: Conics – Construct	ion		
of ellipse, par	abola and hyperbola by eccentricity method – Construction of cycloid	i –		
construction of	involutes of square and circle – Drawing of tangents and normal to the abo	ove		
curves.			С	01
Visualization co	oncepts and Free Hand sketching: Visualization principles –Representation	n of		
	onal objects – Layout of views- Freehand sketching of multiple views fr			
pictorial views	,			
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACE		6+	-12
Orthographic p	l rojection- principles-Principal Planes-First angle projection-projection of poir	nts.		
Projection of st	raight lines (only First angle projections) inclined to both the principal plane	es -		
Determination (of true lengths and true inclinations by rotating line method and traces Project	tion	С	02
	gonal and circular surfaces) inclined to both the principal planes by rotat			
object method.		Ū		
UNIT III	PROJECTION OF SOLIDS		5+	-12
Projection of si	l mple solids like prisms, pyramids, cylinder, cone and truncated solids when	the		
-	to one of the principal planes by rotating object method.		С	О3
	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT		6-	-12
UNII IV	OFSURFACES			
UNIT IV		the		
	bove solids in simple vertical position when the cutting plane is inclined to			
Sectioning of a	bove solids in simple vertical position when the cutting plane is inclined to cipal planes and perpendicular to the other – obtaining true shape of sections.			
Sectioning of a one of the prin	cipal planes and perpendicular to the other - obtaining true shape of secti	ion.	С	04
Sectioning of a one of the prin Development of	•	ion.	С	04
Sectioning of a one of the prin Development o and cones.	cipal planes and perpendicular to the other – obtaining true shape of section of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylind	ion.		
Sectioning of a one of the prin Development of and cones. UNIT V	cipal planes and perpendicular to the other – obtaining true shape of section of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylind ISOMETRIC AND PERSPECTIVE PROJECTIONS	ion. Iers		
Sectioning of a one of the prin Development of and cones. UNIT V Principles of iso	cipal planes and perpendicular to the other – obtaining true shape of section of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylind ISOMETRIC AND PERSPECTIVE PROJECTIONS ometric projection – isometric scale –Isometric projections of simple solids a	ion. lers		
Sectioning of a one of the prin Development of and cones. UNIT V Principles of isotruncated solid	cipal planes and perpendicular to the other – obtaining true shape of section of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylind ISOMETRIC AND PERSPECTIVE PROJECTIONS ometric projection – isometric scale –Isometric projections of simple solids as - Prisms, pyramids, cylinders, cones- combination of two solid objects	ion. lers and in	6+	O4 -12 O5
Sectioning of a one of the prin Development of and cones. UNIT V Principles of isotruncated solid simple vertical	cipal planes and perpendicular to the other – obtaining true shape of section of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylind ISOMETRIC AND PERSPECTIVE PROJECTIONS ometric projection – isometric scale –Isometric projections of simple solids a	ion. lers and in	6+	-12

- Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, Twenty Ninth Edition 2016
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2011.

REFERENCE BOOKS

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.
- 4. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the fundamentals and standards of Engineering graphics
CO2	Perform freehand sketching of basic geometrical constructions and multiple views of objects
CO3	Understand the concept of orthographic projections of lines and plane surfaces
CO4	Draw the projections of section of solids and development of surfaces
CO5	Visualize and to project isometric and perspective sections of simple solids

COs			ı	PROG	RAM	OUTC	OMES	(POs)				PROGRAM SPECIFIC OUTCOMES (PSOs)						
	PO1	PO2	PO3	PO11	PO12	PSO1	PSO2	PSO3										
CO1	3	2	1	2	1	1	-	-	3	3	2	3	2	2	-			
CO2	3	1	2	2	1	1	-	-	3	3	2	3	2	2	-			
CO3	3	1	1	3	1	1	-	-	3	3	2	3	2	2	-			
CO4	3	1	1	3	1	1	-	-	3	3	2	3	2	2	-			
CO5	3	1	2	3	1	1	-	-	3	3	2	3	2	2	-			

GE1107	PYTHON PROGRAMMING LABORATORY	L	T	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2
OBJECTIVES					<u> </u>
To write	e, test, and debug simple Python programs.				
To imp	ement Python programs with conditionals and loops.				
Use fur	nctions for structuring Python programs.				

LIST OF EXPERIMENTS

Read and write data from/to files in Python.

Write an algorithm and draw flowchart illustrating mail merge concept.	
2. Write an algorithm, draw flowchart and write pseudo code for a real life or scientific or	
technical problems	
Scientific problem-solving using decision making and looping.	CO1
 Armstrong number, palindrome of a number, Perfect number. 	
4. Simple programming for one dimensional and two-dimensional arrays.	
 Transpose, addition, multiplication, scalar, determinant of a matrix 	
5. Program to explore string functions and recursive functions.	
6. Utilizing 'Functions' in Python	
 Find mean, median, mode for the given set of numbers in a list. 	
 Write a function dups to find all duplicates in the list. 	CO2
 Write a function unique to find all the unique elements of a list. 	COZ
 Write function to compute gcd, lcm of two numbers. 	
7. Demonstrate the use of Dictionaries and tuples with sample programs.	
8. Implement Searching Operations: Linear and Binary Search.	
9. To sort the 'n' numbers using: Selection, Merge sort and Insertion Sort.	
10. Find the most frequent words in a text of file using command line arguments.	CO3
11. Demonstrate Exceptions in Python.	003
12. Applications: Implementing GUI using turtle, pygame.	

REFERENCE BOOKS

1. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019

TOTAL: 60 PERIODS

- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016.
- 3. Shroff "Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013.
- 4. David M.Baezly "Python Essential Reference". Addison-Wesley Professional; Fourth edition, 2009.
- 5. David M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 2013)

WEBI	REFER	ENCE	S												
1.	http://v	vww.e	dx.org	I											
COUR	SE OU	TCOM	ES												
Upon	comple	etion o	f the	cours	se, st	udent	s wil	l be a	ble to	•					
CO1	1 1 3 17														
CO2	Use py	Use python built in data structures like lists, tuples, and dictionaries for representing compound													
	data.	data.													
CO3	CO3 Read and write data from/to files in Python and applications of python.														
				M	APPI	NG O	F CO	s WIT	ГН РС	s ANI	D PSO	s			
				DDC	GDA	M OU	TCO	MES	'DOc\				PROGI	RAM SP	ECIFIC
COs				FNO	GNA	IVI OU	100	WILS (rusj				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3

BS1108	PHYSICS AND CHEMISTRY LABORATORY	L	T	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2

OBJECTIVES

The students will be trained to perform experiments to study the following.

- The Properties of Matter
- The Optical properties, Characteristics of Lasers & Optical Fibre
- Electrical & Thermal properties of Materials
- Enable the students to enhance accuracy in experimental measurements.
- ❖ To make the student to acquire practical skills in the determination of water quality parameters through volumetric analysis
- ❖ Instrumental method of analysis such as potentiometry, conductometry and pHmetry

LIST OF EXPERIMENTS - PHYSICS

(A minimum of 5 experiments to be performed from the given list)

- Determination of Young's modulus of the material of the given beam by Non-uniform bending method.
- 2. Determination of rigidity modulus of the material of the given wire using torsion pendulum.
- 3. Determination of wavelength of mercury spectra using Spectrometer and grating.
- 4. Determination of dispersive power of prism using Spectrometer.
- 5. (a) Determination of wavelength and particle size using a laser.
 - (b) Determination of numerical aperture and acceptance angle of an optical fibre.
 - (c) Determination of width of the groove of compact disc using laser.
- 6. Determination of Young's modulus of the material of the given beam by uniform bending method.
 - 7. Determination of energy band gap of the semiconductor.
 - 8. Determination of coefficient of thermal conductivity of the given bad conductor using Lee's disc.

DEMONSTRATION EXPERIMENT

1. Determination of thickness of a thin sheet / wire – Air wedge method

LIST OF EXPERIMENTS - CHEMISTRY

(A minimum of 6 experiments to be performed from the given list)

- 1. Estimation of HCl using Na2CO3 as primary standard and determination of alkalinity in water sample.
- 2. Determination of total, temporary & permanent hardness of water by EDTA method.
- 3. Determination of DO content of water sample by Winkler's method.
- 4. Determination of chloride content of water sample by argentometric method.
- 5. Estimation of copper content of the given solution by lodometry.
- 6. Determination of strength of given hydrochloric acid using pH meter.
- 7. Determination of strength of acids in a mixture of acids using conductivity meter.
- 8. Estimation of iron content of the given solution using potentiometer.
- 9. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
- 10. Conductometric titration of strong acid vs strong base.

DEMONSTRATION EXPERIMENTS

- 1. Estimation of iron content of the water sample using spectrophotometer (1,10- Phenanthroline / thiocyanate method).
- 2. Estimation of sodium and potassium present in water using flame photometer.

COUR	SE OUTCOMES
Upon	completion of the course, the students should be
	Able to understand the concept about the basic properties of matter like stress, strain and
004	types of moduli.
CO1	Able to understand the procedure to estimate the amount of dissolved oxygen present in the
	water.
	Able to understand the concept of optics like reflection, refraction, diffraction by using
000	spectrometer grating.
CO2	Able to understand the concept about measuring the conductance of strong acid and strong
	base and mixture of acids by using conductivity meter.
	Able to understand the thermal properties of solids and to calculate thermal conductivity of a
000	bad conductor.
CO3	Able to understand the principle and procedure involved in the amount of chloride present in
	the given sample of water.
004	Able to understand the concept of microscope and its applications in determining the moduli.
CO4	Able to understand the concept of determining the emf values by using potentiometer.
	Able to calculate the particle size of poly crystalline solids.
CO5	Able to understand the concept of determining the pH value and strength of a given acid
	sample by using pH meter.
	MAPPING OF COs WITH POs AND PSOs
-	DDOOD AM ODEOLEIO

COs				DDC	CDA	M OU	ITCOI	MES /	'DOc\				PROGRAM SPECIFIC				
					OUTCOMES (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	1	2		
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	1	2		

														•	-
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	1	2
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	1	2
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	1	2
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	2	1
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	2	1

HS1201	PROFESSIONAL ENGLISH	L	T	Р	С						
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3						
OBJECTIVES											
	op strategies and skills to enhance their ability to read and comprehend e	engir	neer	ing a	and						
	ology texts.										
	their ability to write convincing job applications and effective reports.										
	op their speaking skills to make technical presentations, participate in grou	•									
Streng	then their listening skill which will help them comprehend lectures and talk	ks in	the	ir ar	eas						
of spe	cialization.										
UNIT I	INTRODUCTION TO PROFESSIONAL ENGLISH				9						
Listening: Lis	tening to technical talks with comprehension tasks - Speaking - conv	ersa	ation	1							
methods in re	al life occurrences using expressions of different emotions and imperative	usa	ages								
- Reading -	reading short technical texts from journals- newspapers- Writing-	purp	ose	ر ا	01						
statements -	- extended definitions – writing instructions – checklists-recommend	dati	ons-	. `	O I						
Vocabulary Development- technical vocabulary Language Development – tenses- subject verb											
agreement - c	compound words.										
UNIT II	READING AND STUDY SKILLS				9						
Listening-List	ening Comprehension of a discussion on a technical topic of common into	eres	st by	,							
three or four p	participants (real life as well as online videos)Speaking – describing a p	oroc	ess-								
Reading: Pra	ctice in chunking and speed reading - Paragraphing- Writing- interpreting	ch:	arts,	,							
graphs- Voc	abulary Development: Important foreign expressions in Use, hom	nony	/ms,	ا ر	02						
homophones,	homographs- easily confused words Language Development- imp	oers	onal								
passive voice	, numerical adjectives.										
UNIT III	TECHNICAL WRITING AND GRAMMAR				9						
Listening – lis	stening to conversation – effective use of words and their sound aspects	, str	ess,								
intonation & r	pronunciation - Speaking – mechanics of presentations -Reading: Reading	g loi	nger								
texts for detai	led understanding. (GRE/IELTS practice tests); Writing-Describing a proce	ess,	use	,							
of sequence	words- Vocabulary Development- sequence words- Informal vocabulary	ary	and		O3						
formal substi	tutes-Misspelled words. Language Development- embedded sentenc	es	and								
Ellipsis.											
UNIT IV	REPORT WRITING				9						
Listening – I	Model debates & documentaries and making notes. Speaking – exp	ores	sing								
•	sagreement, assertiveness in expressing opinions-Reading: Technical		_								
-	ts and minutes of meeting - Writing- email etiquette- job application – cov	-									
	paration(via email and hard copy)- analytical essays and issue based e				04						
· ·	evelopment- finding suitable synonyms-paraphrasing- Language Development		-								
-		•									
clauses- if cor	GROUP DISCUSSION AND JOB APPLICATIONS				9						
	tensive Listening. (radio plays, rendering of poems, audio books and	oth	ers)	1	1						
UNIT V	tensive disterning, (radio plays, rendening or poems, addio books and		,								
UNIT V Listening: Ex		sto	ries.								
UNIT V Listening: Ex Speaking -pa	articipating in a group discussion - Reading: Extensive Reading (short				O5						
Speaking –pa	articipating in a group discussion - Reading: Extensive Reading (short y and others)— Writing reports- minutes of a meeting- accident and	sur	vey-	C	O5						
UNIT V Listening: Ex Speaking -pa novels, poetr Writing a letter	articipating in a group discussion - Reading: Extensive Reading (short	sur	vey-	C	O5						

- 1. Board of editors. Fluency in English A Course book for Engineering and Technology. Orient Blackswan, Hyderabad: 2020.
- 2. Barun K Mitra, Effective Technical Communication Oxford University Press: 2006.
- 3. Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi, 2016.

REFERENCE BOOKS

- 1. Raman, Meenakshi and Sharma, Sangeetha- Technical Communication Principles and Practice. Oxford University Press: New Delhi, 2014.
- 2. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015
- 3. Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014.
- 4. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007
- Means, L. Thomas and Elaine Langlois, English & Communication For Colleges. Cengage Learning, USA: 2007.
- 6. Caroline Meyer & Bringi dev, Communicating for Results Oxford University Press: 2021.
- 7. Aruna Koneru, Professional Speaking Skills, Oxford University Press :2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Speak clearly, confidently, comprehensibly, and communicate with one or many listeners										
001	using appropriate communicative strategies.										
CO2	Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide										
002	vocabulary range, organizing their ideas logically on a topic.										
CO3	Read different genres of texts adopting various reading strategies.										
CO4	Listen/view and comprehend different spoken discourses/excerpts in different accents										
CO5	Identify topics and formulate questions for productive inquiry										

COs				PRC	GRA	M OL	JTCO	MES	(POs)	١			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	-	-	-	2	3	-	-	1	-	2		
CO2	-	1	-	2	-	-	-	-	-	3	-	-	1	-	2		
CO3	-	2	-	3	-	-	-	-	-	2	-	-	1	-	2		
CO4	-	-	-	-	-	-	-	-	2	2	-	-	1	-	2		
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	-	2		

MA1202	ENGINEERING MATHEMATICS - II L T										
(Common for all branches of B.E. / B. Tech Programmes Except AI-DS & AI-ML) 4 0											
OBJECTIVES	3										
❖ This	course is designed to cover topics such as Differential Equation, V	'ectc	or C	alcu	ılus						
Com	plex Analysis and Laplace Transform.										
❖ The	various methods of complex analysis and Laplace transforms can be use	ed fo	or ef	ficie	entl						
solvi	ng the problems that occur in various branches of engineering disciplines										
UNIT I ORDINARY DIFFERENTIAL EQUATIONS											
Higher order	linear differential equations with constant coefficients - Method of var	iatio	n of	: '							
parameters- Homogenous equation of Euler's and Legendre's type - System of simultaneous											
linear differer	itial equations with constant coefficients										
UNIT II VECTOR CALCULUS											
OINIT II		Gradient and directional derivative - Divergence and curl - Vector identities - Irrotational and									
	directional derivative - Divergence and curl - Vector identities - Irrotation	onal	and								
Gradient and	directional derivative - Divergence and curl - Vector identities - Irrotation ctor fields - Line integral over a plane curve - Surface integral - Area of a				`Oʻ						
Gradient and Solenoidal ve	<u> </u>	a cu	rved		02						
Gradient and Solenoidal ve surface - Volu	ctor fields – Line integral over a plane curve – Surface integral - Area of	a cu	rved		02						
Gradient and Solenoidal ve surface - Volu application in	ctor fields – Line integral over a plane curve – Surface integral - Area of aume integral - Green's, Gauss divergence and Stoke's theorems – Verifica	a cu	rved		1:						
Gradient and Solenoidal ve surface - Volu application in	ector fields – Line integral over a plane curve – Surface integral - Area of a ume integral - Green's, Gauss divergence and Stoke's theorems – Verifica evaluating line, surface and volume integrals	a cu	rved								
Gradient and Solenoidal ve surface - Voluapplication in UNIT III	ector fields – Line integral over a plane curve – Surface integral - Area of a ume integral - Green's, Gauss divergence and Stoke's theorems – Verifical evaluating line, surface and volume integrals COMPLEX VARIABLES	a cuation	and								

UNIT IV COMPLEX INTEGRATION 12

Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series -Singularities – Residues – Residue theorem – Application of residue theorem for evaluation of real integrals - Use of circular contour and semi circular contour(excluding poles on the real line)

CO4

UNIT V LAPLACE TRANSFORMS

12

CO₅

Existence conditions - Transforms of elementary functions -Basic properties - Transform of unit step function and unit impulse function - Shifting theorems - transforms of derivatives and integrals — Inverse transforms - Convolution theorem - Transform of periodic functions -Application to solution of linear second order ordinary differential equations with constant coefficients

TOTAL: 60 PERIODS

TEXT BOOKS

- 1. Grewal B.S., —Higher Engineering Mathematics II, Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016

REFERENCE BOOKS

- 1. G Bali N., Goyal M. and Watkins C., —Advanced Engineering MathematicsII, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., Advanced Engineering Mathematics II, Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O'Neil, P.V. —Advanced Engineering MathematicsII, Cengage Learning India Pvt., Ltd, New Delhi, 2007.
- 4. Sastry, S.S, —Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd,4th Edition, New Delhi, 2014.
- 5. T. Veerarajan. Engineering Mathematics II, McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

Upon completion of the course,

disciplines.

- CO1 The students will be imbibed with techniques in solving ordinary differential equations that arises in most of the engineering problems

 CO2 The students will be acquainted with the concepts of vector calculus like Gradient, Divergence, Curl, Directional derivative, Irrotational vector and Solenoidal vector. The course gives an understanding of Vector integration, needed for problems in all engineering
- The students will develop an understanding of the standard techniques of complex variable and mapping so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.
- CO4 The student will be exposed to the concept of Cauchy's integral theorem, Taylor and Laurent expansions, Singular points, Application of residue theorem to evaluate complex integrals.
- CO5 Students will understand the purpose of using transforms to create new domain which can give easier ways to handle the problem that is being investigated.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	1	0	0	0	0	1	2	2	1	2
CO2	3	3	3	1	1	1	0	0	0	0	2	1	1	1	1
CO3	3	3	3	2	1	1	0	1	0	0	1	1	2	1	2
CO4	3	3	3	1	0	0	0	0	0	0	1	0	1	2	2
CO5	3	3	3	1	0	0	0	0	0	0	1	0	2	1	1

PH1252	PHYSICS FOR CIVIL ENGINEERING	L	T	Р	C 3					
OBJECTIVES	FCTIVES									
To introduce the principles of thermal, acoustics, optics and new materials for civil enging										
applications.										
UNIT I THERMAL PERFORMANCE OF BUILDINGS										
	Heat transfer through fenestrations, thermal insulation and its benefits- heat gain and heat loss									
	estimation - factors affecting the thermal performance of buildings, thermal measurements,									
thermal comfort, indices of thermal comfort, climate and design of solar radiation, shading										
	heating. Principles of natural ventilation- ventilation measurements, de		•		01					
	ion-Window types and packaged air conditioners-chilled water plant-	•			•					
	piping -cooling load-Air conditioning systems for different types of b									
-	nst fire to be caused by A.C. Systems.	unun	.gc							
UNIT II	ACOUSTICS				9					
	f sound-decibel- Weber–Fechner law–Sabine's formula- derivation using	a ara	-wth	oxdot						
	hod- Absorption Coefficient and its determination-factors affecting aco									
	•				02					
	heir remedies. Methods of sound absorptions-absorbing materials-noise				02					
	, sound insulation and its measurements, impact of noise in multi-s	SIOIE	yeu							
buildings.	LIQUEINO DECIONO			Щ,						
UNIT III	LIGHTING DESIGNS	\ /' -	•		9					
-	tities-spectral quantities- photometry: cosines law, inverse square law.									
•	ophic, scotopic visions - Vision Defects (near-sightedness, farsight									
-	stigmatism, higher order defects(aberrations)) - Colour–luminous e		-	C	О3					
	al field glare, colour- day light calculations-daylight design of w									
	of day-light and use of models and artificial skies, principles of artificial	ligh	ting,							
	artificial lighting – lighting for different buildings.									
UNIT IV	NEW ENGINEERING MATERIALS				9					
-	efinition and classification-Fibre reinforced plastics (FRP) and fibre re									
`	letallic glasses-Shape memory alloys-Ceramics-Classification-Crystalling									
Crystalline-Bonded ceramics, Manufacturing methods- Slip casting- Isostatic pressing- Gas										
pressure bonding- Properties- thermal, mechanical, electrical and chemical ceramic fibres-										
ferroelectric and ferromagnetic ceramics- High Aluminium ceramics- Polymer nanocomposites										
in construction.										
UNIT V	HAZARDS				9					
Seismology an	d Seismic waves-Earth quake ground motion-Basic concepts and es	tima	ation							
techniques- site effects- Cyclone and flood hazards-Fire hazards and fire protection, fire-										
proofing of materials, fire safety regulations and firefighting equipment -Prevention and safety										
measures -	Disaster Management: Fundamental concept of Disaster Mana	gem	ient,							
government, N	IGOs and peoples participation disaster management									
	TOTAL	: 45	5 PE	RIO	DS					

- 1. Alexander, D. "Natural disaster", Springer (1993).
- 2. Budinski, K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", Prentice Hall, 2009.
- 3. Severns, W.H. & Fellows, J.R. "Air conditioning and Refrigeration", John Wiley and Sons, London, 1988.
- 4. Stevens, W.R., "Building Physics: Lighting: Seeing in the Artificial Environment, Pergaman Press, 2013.

REFERENCE BOOKS

- 1. Gaur R.K. and Gupta S.L., Engineering Physics. Dhanpat Rai publishers, 2012.
- 2. Reiter, L. "Earthquake hazard analysis Issues and insights", Columbia University Press, 1991.
- 3. Shearer, P.M. "Introduction to Seismology", Cambridge University Press, 1999.

COURSE OUTCOMES

Upon completion of the course, students will be able to

	F
CO1	Knowledge on the thermal performance of buildings,
CO2	Knowledge on the acoustic properties of buildings,
CO3	Knowledge on various lighting designs for buildings,
CO4	Knowledge on the properties and performance of engineering materials,
COS	Knowledge on the hazards of huildings and disaster management

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	2	3	3	3	3	3	1	-	2
CO2	3	3	3	3	2	3	2	3	2	2	3	2	1	-	2
CO3	3	3	3	3	3	2	2	3	3	3	2	3	1	-	2
CO4	3	2	2	2	2	2	3	2	2	3	3	3	1	-	2
CO5	2	2	3	3	2	3	2	3	3	3	3	3	1	-	2

E1204 ENVIRONMENTAL SCIENCE AND ENGINEERING (Common for all branches of B.E. / B. Tech Programmes) BJECTIVES ❖ To study the inter relationship between living organism and environment. ❖ To appreciate the importance of environment by assessing its impact on the human envision the surrounding environment, its functions and its value. ❖ To find and implement scientific, technological, economic and political solutions.	P (0)										
 ★ To study the inter relationship between living organism and environment. ★ To appreciate the importance of environment by assessing its impact on the human envision the surrounding environment, its functions and its value. ★ To find and implement scientific, technological, economic and political solutions. 											
 To study the inter relationship between living organism and environment. To appreciate the importance of environment by assessing its impact on the human envision the surrounding environment, its functions and its value. To find and implement scientific, technological, economic and political solutions. 											
 To appreciate the importance of environment by assessing its impact on the human envision the surrounding environment, its functions and its value. To find and implement scientific, technological, economic and political solutions. 											
envision the surrounding environment, its functions and its value. To find and implement scientific, technological, economic and political solutions.	world										
❖ To find and implement scientific, technological, economic and political solution											
	ons t										
environmental problems.	,,,,										
 To study the integrated themes and biodiversity, natural resources, pollution control and 	l wast										
management.	· ···aot										
 To study the dynamic processes and understand the features of the earth's interior 	or an										
surface.	· · · · ·										
NIT I ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY											
efinition, scope and importance of environment – Need for public awareness – Role of											
dividual in Environmental protection – Concept of an ecosystem – Structure and function of											
n ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem –											
ood chains, food webs and ecological pyramids – Ecological succession – Types,											
paracteristic features, structure and function of forest, grass land, desert and aquatic (ponds,											
kes, rivers, oceans, estuaries) ecosystem. Biodiversity - Definition - Genetic, species and	СО										
cosystem diversity – Value of biodiversity – Consumptive use, productive use, social, ethical,											
esthetic and option values – Biodiversity at global, national and local levels – India as a											
ega-diversity nation - Hot spots of biodiversity - Threats to biodiversity- Habitat loss,											
paching of wild life, human-wildlife conflicts - Wildlife protection act and forest conservation											
ct -Endangered and endemic species - Conservation of biodiversity - In-situ and ex-situ											
onservation of biodiversity.											
NIT II ENVIRONMENTAL POLLUTION											
efinition - Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c)	T										
oil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards –											
olid waste management: causes, effects and control measures of municipal solid wastes -											
oblems of e-waste – Role of an individual in prevention of pollution – Pollution case studies –	CO										
saster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of											
cal polluted site – Urban / Rural / Industrial / Agricultural.											
NIT III NATURAL RESOURCES	<u> </u>										
prest resources: Use and over-exploitation – Deforestation – Case studies – Timber	_ T										
traction, mining, dams and their effects on forests and tribal people – Water resources – Use											
nd overutilization of surface and ground water, floods, drought, conflicts over water – Dams:											
enefits and problems – Mineral resources: Use and exploitation – Environmental effects of											
ctracting and using mineral resources – Case studies – Food resources: World food problems											
Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer–	CO										
esticide problems, water logging, salinity – Case studies – Energy resources: Growing energy											
eeds – Renewable and non renewable energy sources – Use of alternate energy sources –											
Case studies - Land resources: Land as a resource - Land degradation, man induced											
ndslides, soil erosion and desertification – Role of an individual in conservation of natural											

UNIT IV	SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act – Forest conservation act – Enforcement machinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness.

CO4

9

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

9

Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies.

CO₅

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).
- 2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004).
- 3. Dr. A. Sheik Mideen and S.Izzat Fathima, "Environmental Science and Engineering", Airwalk Publications, Chennai, (2018).

REFERENCE BOOKS

- 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).
- 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd, Hydrabad, (2015).
- 3. G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt.Ltd, Delhi, (2014).
- 4. R. Rajagopalan, 'Environmental Studies-From Crisis to Cure', Oxford University Press, (2005).
- 5. Anubha Kaushik , C.P. Kaushik, "Perspectives in Environmental Studies", New Age International Pvt. Ltd, New Delhi, (2004).
- 6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Obtain knowledge about environment, ecosystems and biodiversity.
- CO2 Take measures to control environmental pollution.
- CO3 Gain knowledge about natural resources and energy sources.
- CO4 Find and implement scientific, technological, economic and political solutions to environmental problems.
- CO5 Understand the impact of environment on human population.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	3	3	3	3	2	2	2	3	3	1	1
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	1	3
CO3	3	3	2	2	3	3	2	2	1	2	1	3	1	2	1
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	3	3
CO5	3	2	3	2	3	3	3	2	2	2	2	3	1	2	1

BE1253	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	L	T	Р	С
OBJECTIVES		3	0	0	3
	lain the basic laws used in Electrical circuits and the different component	ts a	and t	func	tion
of elect	rical machines.				
To exp	lain the fundamentals of semiconductor and applications.				
To exp	lain the principles of digital electronics.				
To impa	art knowledge of communication.				
UNIT I	ELECTRICAL CIRCUITS & MEASURMENTS				9
Fundamental I	aws of electric circuits- Steady State Solution of DC Circuits - Introduction	n to) AC	;	.1
Circuits -Sinus	soidal steady state analysis- Power and Power factor - Single Phase and	T t	hree	ے د	01
Phase Balanc	ed Circuits. Classification of instruments - Operating Principles of inc	dica	ating	,	,01
Instruments.					
UNIT II	ELECTRICAL MACHINES				9
Construction, I	Principle of Operation, Basic Equations and Applications of DC Generato	ors,	DC	;	
Motors, Single	Phase Transformer, single phase induction Motor.			(02
UNIT III	SEMICONDUCTOR DEVICES AND APPLICATIONS				9
Introduction - 0	Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its			$\overline{\mathbf{I}}$	
Characteristics	s – Half wave and Full wave Rectifiers – Voltage Regulation-Bipolar J	und	ction	ו כ	03
Transistor – Cl	B, CE, CC Configurations and Characteristics.				
UNIT IV	DIGITAL ELECTRONICS				9
Binary Number	ı er System – Boolean Algebra theorems– Logic Gates, Digital circ	cuit	ts -	-	
Combinational	circuits- Half adder, Full Adder, Half Subtractor, Full Subtractor, Mult	iple	exer	/ c	04
Demultiplexer,	Introduction to sequential Circuits– Flip-Flops – Registers and Counters.				
UNIT V	FUNDAMENTALS OF COMMUNICATION ENGINEERING				9
Introduction -	Elements of Communication Systems- Need for Modulation, Princi	ple	s of	f	
Amplitude and	Frequency Modulations- Communication Systems: TV, Microwave, Satel	lite	and	ı c	CO 5
Optical Fibre (I	Block Diagram Approach only).				
	TOTAL	: 4	5 PE	RIC	DS
TEXT BOOKS					
1. Mittle N	I., "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 19	90.			
2. Sedha	R.S., "Applied Electronics", S. Chand & Co., 2006.				

REFERENCE BOOKS

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, 2006.
- 2. Nagsarkar T K and Sukhija M S, "Basics of Electrical Engineering", Oxford press 2005.
- 3. Mehta V K, "Principles of Electronics", S.Chand & Company Ltd, 1994.
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, 2003.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Ability to understand the basic laws used in Electrical circuits and principle of measuring
	Instruments.
CO2	Ability to identify the electrical components explain the characteristics of electrical machines.
CO3	Ability to identify semiconductor devices and its applications.
CO4	Understand the design principles of digital electronics circuits.
CO5	Able to impart the knowledge of various communication systems.

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1	1	1	1	1	1	1	3	2	2
CO2	3	3	1	1	1	1	1	1	1	1	1	2	3	2	2
CO3	3	3	3	1	3	3	2	1	2	2	3	3	3	2	2
CO4	3	3	3	2	1	2	2	2	2	2	3	3	3	2	2
CO5	3	3	2	1	2	1	1	1	1	2	2	3	3	2	2

(0) (0) (1) (1) (1) (1) (1)	PC
(0 4
BJECTIVES ❖ To develop capacity to predict the effect of force.	
To develop motion in the course of carrying out the design functions of Engineering.	
	9+3
troduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram	
nd triangular Law of forces – Vectorial representation of forces – Vector operations of forces -	
	CO1
omponents – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space –	
quivalent systems of forces – Principle of transmissibility.	
	9+3
ree body diagram – Types of supports –Action and reaction forces – stable equilibrium –	
oments and Couples - Moment of a force about a point and about an axis - Vectorial	
epresentation of moments and couples – Scalar components of a moment – Varignon's	CO2
eorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium	
Rigid bodies in three dimensions.	
NIT III PROPERTIES OF SURFACES AND SOLIDS	9+3
entroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular	
reas by integration – T section, I section, - Angle section, Hollow section by using standard	
rmula - Theorems of Pappus - Area moments of inertia of plane areas - Rectangular,	
rcular, triangular areas by integration – T section, I section, Angle section, Hollow section by	
sing standard formula - Parallel axis theorem and perpendicular axis theorem - Principal	CO3
oments of inertia of plane areas - Principal axes of inertia-Mass moment of inertia -mass	
oment of inertia for prismatic, cylindrical and spherical solids from first principle - Relation to	
rea moments of inertia.	
NIT IV DYNAMICS OF PARTICLES	9+3
isplacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear	
otion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact	CO4
elastic bodies.	
NIT V FRICTION AND RIGID BODY DYNAMICS	9+3
riction force - Laws of sliding friction - equilibrium analysis of simple systems with sliding	
ction – wedge friction Rolling resistance -Translation and Rotation of Rigid Bodies –	COS
elocity and acceleration – General Plane motion of simple rigid bodies such as cylinder,	CUS
sc/wheel and sphere	
TOTAL : 45 + 15 PER	IOD:
EXT BOOKS	

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi(2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press(2010).

REFERENCE BOOKS

- 1. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers,1998.
- 2. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.
- 3. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education2006.
- 4. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley &Sons,1993.
- 5. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	illustrate the vectorial and scalar representation of forces and moments
CO2	analyse the rigid body in equilibrium
CO3	evaluate the properties of surfaces and solids
CO4	calculate dynamic forces exerted in rigid body
CO5	determine the friction and the effects by the laws of friction

MAPPING OF COS WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	-	1	2	1	-	2	3	2	2	3	2	-
CO2	3	3	2	-	1	2	1	-	2	3	2	2	3	2	-
CO3	3	3	1	-	1	2	1	-	2	3	2	2	3	2	-
CO4	3	3	1	-	1	2	1	-	2	3	2	2	3	2	-
CO5	3	3	1	-	1	2	1	-	2	3	2	2	3	2	-

GE	1207	ENGINEERING PRACTICES LABORATORY	L	Р	Т	С
		(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2
OE	SJECTIVES					
	•	vide exposure to the students with hands on experience on various ba	ISIC	engi	neer	ring
	•	es in Civil, Mechanical, Electrical and Electronics Engineering				
LIS	ST OF EXP	ERIMENTS				
	01)/// EN	GROUP A (CIVIL & MECHANICAL)	40			
ı		GINEERING PRACTICE	13	5		
	Buildings		ب مار د	-1":-		
	(a)	Study of plumbing and carpentry components of residential and i	nau	sına	'	
	Dlumbine	buildings. Safety aspects.				
	Plumbing		امييه	inaa		
	(a)	Study of pipeline joints, its location and functions: valves, taps, couplings reducers allows in bousehold fittings	Jupi	iriys,	'	
	(h) Study /	unions, reducers, elbows in household fittings. of pipe connections requirements for pumps and turbines.				
	` ,	ation of plumbing line sketches for water supply and sewage works.				-04
		-on-exercise:				01
	` '	sic pipe connections – Mixed pipe material connection – Pipe connecti	ons	with		
	Ба	different joining components.	0113	VVICI	'	
	(e) Demor	nstration of plumbing requirements of high-rise buildings.				
	` '	y using Power Tools only:				
	- '	of the joints in roofs, doors, windows and furniture.				
	` '	-on-exercise:				
	` '	work, joints by sawing, planing and cutting.				
II		ICAL ENGINEERING PRACTICE	18	3		
	Welding:					
	•	ation of butt joints, lap joints and T- joints by Shielded metal arc welding.				
		elding practice				
	Basic Ma	chining:				
	(a) Simple	Turning and Taper turning				
	(b) Drilling	Practice				
	Sheet Me	tal Work:				
	(a) Formin	g & Bending:				
	(b) Model	making – Trays and funnels.			С	02
	(c) Differe	nt type of joints.				
	Machine	assembly practice:				
	(a) Study	of centrifugal pump				
	(b) Study	of air conditioner				
	Demonst	ration on:				
	(a)	Smithy operations, upsetting, swaging, setting down and	ben	ding		
		Example –Exercise – Production of hexagonal headed bolt.				
	(b) Found	ry operations like mould preparation for gear and step cone pulley.				
	(c)	Fitting – Exercises – Preparation of square fitting and V – fitting models.				

		GROUP B (ELECTRICAL & ELECTRONICS)	
III	ELEC	CTRICAL ENGINEERING PRACTICE 13	
	1.	Residential house wiring using switches, fuse, indicator, lamp and energy meter.	
	2.	Fluorescent lamp wiring.	CO3
	3.	Stair case wiring	COS
	4.	Measurement of electrical quantities - voltage, current, power & power factor in	
		RLC circuit.	
	5.	Measurement of energy using single phase energy meter.	CO4
	6.	Measurement of resistance to earth of an electrical equipment.	CO4
IV	ELECT	RONICS ENGINEERING PRACTICE 16	
	1.	Study of electronic components and equipment's - Resistor, colour coding	
		measurement of AC signal parameter (peak-peak, rms period, frequency)	
		using CR.	CO5
	2.	Study of logic gates AND, OR, EX-OR and NOT.	COS
	3.	Generation of Clock Signal.	
	4.	Soldering practice - Components Devices and Circuits - Using general purpose	
		PCB. Measurement of ripple factor of HWR and FWR.	
		TOTAL: 60 PER	RIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	Description of Equipment	Quantity required
	CIVIL	
1.	Assorted components for plumbing consisting of metallic pipes, plastic pipes,	15 sets
	flexible pipes, couplings, unions, elbows, plugs and other fittings.	
2.	Carpentry vice (fitted to work bench)	15 Nos
3.	Standard woodworking tools 15 Sets.	15 Sets.
4.	Models of industrial trusses, door joints, furniture joints	5 each
	Power Tools:	
	(a) Rotary Hammer	
	(b) Demolition Hammer	
5.	(c) Circular Saw	2 Nos
	(d) Planer	
	(e) Hand Drilling Machine	
	(f) Jigsaw	
	MECHANICAL	
1.	Arc welding transformer with cables and holders.	5 Nos
2.	Welding booth with exhaust facility.	5 Nos
3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets
4.	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos

6.	. nea	ıı ııı ıuı	nace,	anvii	and s	smithy	/ tools	6.						2	Sets		
7.	. Mou	Moulding table, foundry tools. Power Tool: Angle Grinder. Study-purpose items: centrifugal pump, air-conditioner.															
8.	. Pow	er To	ol: An	gle G	rinder									2	Nos		
9.	. Stu	dy-pu	rpose	item	s: ce	ntrifuç	gal pu	mp, a	ir-cor	ditione	er.			1	each		
							ELE	CTR	ICAL								
1.	Ass	orted (electri	cal co	mpor	nents	for ho	ouse v	viring.	i				15	5 Sets		
2.	Elec	ctrical	meas	uring	instru	ments	S.							10	10 Sets		
3.	Stu	dy pu	rpose	item	s: Iro	n box	, fan a	and re	gulat	or, em	ergeno	y lamp).	1	1 each		
4.	. Meg	Megger (250V/500V). Power Tools:															
	Pov	ver To	ols:														
5.	. (a) I	Range	Finde	er										2	Nos		
	(a) Range Finder(b) Digital Live-wire detector																
							ELE	CTRC	NICS	6							
1.	Solo	dering	guns	10 No	os.									10	Nos.		
2.	Ass	orted (electro	onic c	ompo	nents	for m	naking	circu	its 50	Nos.			50	Nos.		
3.	. Sma	all PCI	Зs.											10	Nos.		
4.	. Mul	timete	rs					4. Multimeters									
5.		dy pu	rpose	item	s: Te	lepho	ne, Fl	M rad	io, lov	v-volta	ge pov	ver sup	oply		O Nos. each		
5. COUR	Stures Sture SE OUT comple Fabrica equipm	TCOM tion o ate car nent's to out the out bas re the	ES f the pentr to join basic sic hore	cours y com the s mach me ele ical qu	se, stractuctuctrical	udent nts ai ires. i oper al wor ies , gate	ations	l be a pe cor s Mak d app	ble to	ons ind models	cluding s using	ı pluml	oing wor	ks. Use	welding		
COUR Upon CO1 CO2 CO3 CO4	SE OUT comple Fabrica equipm Carry comple Measure	TCOM tion o ate car nent's to out the out bas re the	ES f the pentr to join basic sic hore	cours y com the s mach me ele ical qu	se, stractuctuctrical ectrical uantit nents	udent nts and pression oper al work ies gate	ations	l be a be con s Mak d app dering	ble to nnection e the oliance g prace	ons indesended	cluding s using	ı pluml	metal w	ks. Use	each		
COUR Upon CO1 CO2 CO3 CO4	Students Stu	TCOM tion on the care the care the care the care the care the care	ES f the pentry to join basic sic hor electry	cours y com the s mach me ele ical qu ompon	se, stongone structuring ectrical uantity nents	udent nts and sires. I oper all workies I, gate	ations s, sole	l be a pe cor s Mak d app dering s Wil	ble to nnecti e the liance TH PC	ons incomodels es. etices S ANI	cluding s using	y pluml y sheet	ping wor	ks. Use	each welding ECIFIC PSOs)		
COUR Upon CO1 CO2 CO3 CO4 CO5	SE OUT comple Fabrica equipm Carry comple Measure	TCOM tion o ate car nent's to out the out bas re the	ES f the pentr to join basic sic hore	cours y com the s mach me ele ical qu	se, stractuctuctrical ectrical uantit nents	udent nts and pression oper al work ies gate	ations	l be a be con s Mak d app dering	ble to nnection e the oliance g prace	ons indesended	cluding s using	ı pluml	metal w	ks. Use	each		
COUR Upon CO1 CO2 CO3 CO4 CO5 COs	Students Stu	TCOM tion on the care the care the care the care the care the care	ES f the pentry to join basic sic hor electry	cours y com the s mach me ele ical qu ompon	se, stongone structuring ectrical uantity nents	udent nts and sires. I oper all workies I, gate	ations s, sole	l be a pe cor s Mak d app dering s Wil	ble to nnecti e the liance TH PC	ons incomodels es. etices S ANI	cluding s using	y pluml y sheet	ping wor	ks. Use	each welding ECIFIC PSOs)		
COUR Upon CO1 CO2 CO3 CO4 CO5 CO1 CO2	Students Stu	TCOM tion of the care the put the put base re the pate on	rpose ES f the pentr to join basic sic hor electr the co	the series machine electron mpor	se, structure hining ectrical uantity nents	udent nts and sires. I oper all workies I, gate NG O	ations s, sole FCO	l be a pe cor s Mak d app dering s Wil	ble to nnection e the cliance (POs)	ons incomodels es. etices S ANI	eluding s using PO11	y plumly sheet	PROG OUTO	ks. Use vorks RAM SP COMES (each welding ECIFIC PSOs)		
COUR Upon CO1 CO2 CO3 CO4 CO5 COs	Fabrica equipm Carry of Measur Elabora	TCOM tion of ate care the ate on	rpose ES f the pentry to join basic sic hor electry the co	cours y com the s mach me ele ical qu ompor	se, structure hining ectrical uantity nents	udent nts ai ires. oper al wor ies , gate NG O	ations s, solutions Tracol Tracol	l be a pe cor s Mak d app dering s Wil	ble to nnection e the cliance (POs)	ons incomodels es. etices S ANI	eluding s using PO11	y plumly sheet	PROGOUTO	RAM SP COMES (PSO2	each welding ECIFIC PSOs) PSO3		

2 Nos

5.

Centre lathe.

CE12	08	COMPUTER AIDED DRAFTING LABORATORY	L	Т	Р	С
			0	0	4	2
OBJE	CTIVES				•	
*		erstand the regulations as per National Building Code and to identify ments of buildings.	y the	e fui	nctio	na
*	To ma	ke the students learn the various elements of Residential / Institution is	nal /	/ Wo	orksł	nop
*	To imp	art fundamental knowledge on AutoCAD software.				
	- 1	art fundamental knowledge on AdioCAD software.				
*	•	ble the student to develop the drafting skills in drawing plan, section a	and	elev	atior	۱ ٥
*	To ena	-		elev	atior	0
	To ena	ble the student to develop the drafting skills in drawing plan, section a		elev	atior	0
	To ena	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building Cod		eleva	ation	0
LIST	To ena various OF EXPI Introdu	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building CodeRIMENTS	le.			1 0
LIST (To ena various OF EXPI Introdu	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building Code ERIMENTS Ction to building Components and Their Functions Ction to CAD (Computer Aided Drafting) software, General commands a	le.			O1
LIST (To ena various OF EXPI Introdu Introdu practic	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building Code ERIMENTS Ction to building Components and Their Functions Ction to CAD (Computer Aided Drafting) software, General commands a	le.			
1. 2.	To ena various OF EXPI Introdu Introdu practice Elevati	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building Code ERIMENTS etion to building Components and Their Functions etion to CAD (Computer Aided Drafting) software, General commands ares.	le.			
1. 2. 3.	To ena various OF EXPI Introdu Introdu practice Elevati Elevati	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building Code ERIMENTS ction to building Components and Their Functions ction to CAD (Computer Aided Drafting) software, General commands a ses. on and cross section of Partly Panelled and Glazed Window	le.			
1. 2. 3. 4.	To ena various OF EXPI Introdu Introdu practice Elevati Elevati Plan ar	ble the student to develop the drafting skills in drawing plan, section a types of buildings using AutoCAD software as per National Building Code ERIMENTS Cition to building Components and Their Functions Cition to CAD (Computer Aided Drafting) software, General commands a ses. On and cross section of Partly Panelled and Glazed Window On and cross section of Framed and Panelled Double Leaf Door	le.			

Upon completion of the course, students will be able to

9. Plan, Section and Elevation of Framed office building10. Plan, Section and Elevation of an Industrial building

CO1 To Develop drafting skills in drawing building components like Doors, windows and staircase using AutoCAD software

TOTAL: 60 PERIODS

8. Plan, Section and Elevation – Storied residential building with Dog legged staircase

CO2 To Develop drafting skills in drawing plan, section and elevation of various types of buildings using AutoCAD software

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	-	-	3	3	3	-	-	2	1	-	3	3	3	2			
CO2	3	ı	-	3	3	3	-	ı	2	1	-	3	3	3	2			

MA1301	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	L	Т	Р	С
	(Common to CIVIL, EEE, EIE, MECH and BIO)	4	0	0	4
OBJECTIVES		•	•	•	

- ❖ To introduce the basic concepts of Partial differential equation and to find its solutions.
- ❖ To introduce Fourier series analysis which is vital to many applications in engineering apart from its use in solving boundary value problems.
- ❖ To acquaint the student with Fourier series techniques to solve heat and wave flow problems in engineering.
- ❖ To familiarize the student with Fourier transform techniques used in solving various practical engineering problems.
- ❖ To introduce the effective mathematical tools for the solutions of difference equations that model several physical processes and to develop transform techniques for discrete time systems.

UNIT I	PARTIAL DIFFERENTIAL EQUATIONS	12
Formation of p	artial differential equations – Singular integrals – Solutions of standard types of	
first order part	tial differential equations (except $f(x^m z^k p, y^n z^k q) = 0$) – Lagrange's linear	004
equation – Lir	near partial differential equations of second and higher order with constant	CO1
coefficients of I	both homogeneous and non-homogeneous types	
UNIT II	FOURIER SERIES	12
Dirichlet's con	ditions -Necessary and sufficient condition for existence of Fourier series –	
General Fourie	er series – Odd and even functions – Half range sine series –Half range cosine	CO2
series – Comp	lex form of Fourier series – Parseval's identity – Harmonic analysis.	
UNIT III	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	12
Classification of	of PDE - Method of separation of variables - Fourier Series Solutions of one-	
dimensional w	ave equation – One dimensional equation of heat conduction – Steady state	CO3
solution of two	dimensional equation of heat conduction.	
UNIT IV	FOURIER TRANSFORMS	12
Statement of	Fourier integral theorem – Fourier transform pair – Fourier sine and Cosine	•
transforms - P	roperties – Transforms of simple functions – Convolution theorem – Parseval's	CO4
identity.		
UNIT V	Z – TRANSFORMS AND DIFFERENCE EQUATIONS	12
Z-transforms -	- Elementary properties - Inverse Z-transform (using partial fraction and	
residues) -Init	ial and final value theorems - Convolution theorem - Formation of difference	CO5
equations – Sc	olution of difference equations using Z – transform	
	TOTAL : 60 PER	RIODS

- 1. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2017.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, India, 2016
- 3. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.

REFERENCE BOOKS

- 1. Dass, H.K., and Er.RajnishVerma, "Higher Engineering Mathematics", S.Chand Private Ltd.,2011.
- 2. Peter V.O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012
- 3. James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 4. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012

COURSE OUTCOMES

Upon completion of the course, students will be able to

Сроп	completion of the course, students will be use to
CO1	Understand how to solve the partial differential equations and apply these concepts in the field of engineering.
CO2	Learn Fourier series analysis which plays a vital role in the application of electrical engineering, vibration analysis, acoustics, optics, signal and image processing.
CO3	Appreciate the physical significance of Fourier series techniques in solving one and two- dimensional heat flow problems and one-dimensional wave equations and this concept is applied in the fields like elasticity, heat transfer, quantum mechanics and also extensively in physical phenomenon.
CO4	Understand the mathematical principles on transforms and gain the ability to formulate and solve some of the physical problems like designing electrical circuits, signal processing, signal analysis, image processing etc.
CO5	Learn to use the effective mathematical tools like Z- transform for the solving difference equations in discrete time signals etc.

MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO12	PSO1	PSO2	PSO3								
CO1	3	3	2	2	1	1	2	0	2	1	2	0	3	1	1
CO2	3	3	2	2	1	2	1	0	1	0	2	0	3	2	1
CO3	3	3	2	2	0	1	0	0	1	0	2	0	3	1	1
CO4	14 3 2 1 2 1 0 1 1 0 0 3											0	2	2	2
CO5	3	3	2	2	1	0	1	0	2	1	2	0	3	1	2

CE1302	ENGINEERING GEOLOGY AND CONSTRUCTION MATERIALS	L	T	Р	С
		3	0	0	3
earthquaroads, a roads, a To intro their pro UNIT I Geology in civ weathering of a river, wind, gro quakes – Seisr	dents will be able to understand the importance of geological knowledge ake, volcanism and to apply this knowledge in projects such as dams, to irport and harbor. duce students to various materials commonly used in civil engineering coperties. PHYSICAL GEOLOGY ill engineering – branches of geology – structure of earth and its commonder of the structure of weathering – soils - landforms and processes associated and sea – relevance to civil engineering. Plate tectonics in incide zones in India.	e su unno cons	ch a els, l truct	s ea	rth, ges, and 9
UNIT II	MINEROLOGY AND PETROLOGY				9
Quartz group, Mica – muscov Classification coccurrence, e Sandstone, Lin rocks- Rock Ma	mical and Optical Properties of minerals – Crystal System Physical Prop Feldspar group, Pyroxene - hypersthene and augite, Amphibole – hore ite and biotite, Calcite, Gypsum and Clay minerals. of rocks, Introduction to Index and Engineering properties of rocks. Desingineering properties, Distribution and uses of Granite, Dolerite, nestone, Laterite, Shale, Quartzite, Marble, Slate, Gneiss and Schist – ass Rating (RMR), Rock Quality Designation (RQD), Geological Streng in for rock mass classification.	nble scrip Ba Tes	nde, tion, salt, st on	C	O2
UNIT III	STRUCTURAL GEOLOGY AND APPLICATION OF GEOINVESTIGATIONS	OLO	GIC	AL	9
relevance to civilized Geological corrupt and Road cutti	nditions necessary for design and construction of Dams, Reservoirs, and the Hydrogeological investigations and mining - Coastal protection structions and mitigation - Tsunami - causes - Tsunami - Tsunam	Tuni	nels, ures.	C	: 03
UNIT IV	CONSTRUCTION MATERIALS				9
Introduction, Ty concrete – stee	pes, Properties, Testing and Applications of -Bricks – stones – sand – cel – timber.	eme	ent –	C	04
UNIT V	MODERN CONSTRUCTION MATERIALS				9
Refractories -	nics – Sealants for joints – Fibre glass reinforced plastic – Clay pro Composite materials – Types – Applications of laminar composites nembranes and Geotextiles for earth reinforcement.				05
	TOTAL	. : 4	5 PE	RIO	DS

- Venkat Reddy. D. Engineering Geology, Vikas Publishing House Pvt. Lt, 2010. 1.
- Parbin Singh. A "Text book of Engineering and General Geology", Katson publishing house, 2. Ludhiana 2013.

- 3. Rajput. R.K., "Engineering Materials", S. Chand and Company Ltd., 2008.
- 4. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.

REFERENCE BOOKS

- 1. Blyth F.G.H. and de Freitas M.H., Geology for Engineers, Edward Arnold, London, 2017.
- 2. Bell .F.G.. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.
- 3. Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.
- 4. Gambhir. M.L., & Neha Jamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
- 5. IS383–1970: Indian Standard specification for coarse and fine aggregate from natural Sources for concrete, 2011
- 6. IS1542–1992: Indian standard specification for sand for plaster, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

	Acquire the knowledge of the topographical formation, interior earth, gradational activities and
CO1	weathering and also the theory of plate tectonics which answers the reason for the occurrence
	of earthquake, landslides in an area.
CO2	Interpret the minerals and Rocks & assess its physical, chemical and mechanical properties.
CO3	Determine geological structures, its exploration and its relevance on Civil Engineering Projects.
CO4	Gain knowledge on the properties and tests to be conducted for various construction materials.
CO5	Introduce the knowledge of modern materials

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO3													PSO2	PSO3		
CO1	2	-	-	2	-	2	-	-	3	-	-	3	3	-	3		
CO2	2	-	-	2	-	2	-	-	2	-	-	2	3	-	3		
CO3	3	-	2	2	-	2	-	-	3	-	-	3	3	-	3		
CO4	3	-	2	1	-	2	-	-	2	-	_	2	2 -				
CO5	3	-	2	1	-	2	-	-	2	-	=	2	2	=	2		

021000		_	-		
		3	0	0	3
OBJECTIVES					
To lear	n the fundamental concepts of Stress in simple and complex states.				
To kno	w the mechanism of load transfer in beams and the induced stresses due	to s	imp	le	
bendin	g and unsymmetrical bending				
	ermine the deformation in determinate beams				
To kno	w the basic concepts of analysis of indeterminate beams				
UNIT I	SIMPLE AND COMPOUND STRESSES				9
Stresses in sir	nple and compound bars – Thermal stresses – Elastic constants - Thin cyli	ind	rical		
and spherical	shells – Biaxial state of stress – Principal stresses and principal planes –	Мо	hr's	С	01
circle of stress	es - Torsion on circular shafts.				
UNIT II	BENDING OF BEAMS				9
Types of bea	ims and transverse loadings- Shear force and bending moment for	Sin	nply		
supported, ca	ntilever and over-hanging beams - Theory of simple bending - Bending	str	ess	C	02
distribution -S	hear stress distribution				
UNIT III	DEFLECTION OF BEAMS				9
Double Integra	ation method – Macaulay's method – Area moment method – Conjugate	e be	eam		
method - Strai	n energy method for determinate beams.			C	О3
UNIT IV	INDETERMINATE BEAMS				9
Propped Cant	ilever and Fixed Beams - Fixed end moments reactions, slope and deflec	tior	for		<u> </u>
standard case	s of loading — Continuous beams – support reactions and moments – Th	neo	rem	С	04
of three mome	ents – Shear Force and Bending Moment Diagrams.				
UNIT V	UNSYMMETRICAL BENDING AND THEORIES OF FAILURE				9
Unsymmetrica	l bending of beams - shear centre - Thick cylinders - Theories of fa	ailur	e –	\Box	
Principal stres	s, principal strain, shear stress, strain energy and distortion energy the	orie	s –	C	:05
application pro	oblems.				
	TOTAL :	: 45	PE	L RIO	DS
	101/121				

STRENGTH OF MATERIALS

TEXT BOOKS

CE1303

- 1. Vazirani.V.N, Ratwani.M.M, Duggal .S.K Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1, Khanna Publishers, New Delhi 2014.
- 2. Rajput.R.K. Strength of Materials, S.Chand& Company Ltd., New Delhi 2014.

REFERENCE BOOKS

- Irwing H.Shames, James M.Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, New Delhi, 2002
- 2. Beer. F.P. &Johnston.E.R. "Mechanics of Materials", Tata McGraw Hill, Sixth Edition, New Delhi 2010.
- 3. James M.Gere., Mechanics of Materials, Thomas Canada Ltd., Canada, 2006.
- 4. Egor. P.Popov, Engineering Mechanics of Solids, Prentice Hall of India, Second Edition New Delhi 2015.

COURSE OUTCOMES

Upon	completi	on of t	he cou	ırse, s	tuden	ts will	be ab	ole to							
CO1	Unders	tand the	e conc	epts of	f stress	s and s	strain,	princi	pal str	esses a	nd prin	cipal pl	anes.		
CO2	Determine Shear force and bending moment in beams and understand concept of theory of simple bending.														
CO3	Calculate the deflection of beams by different methods and selection of method for determining slope or deflection.														
CO4	Analyze propped cantilever, fixed beams and continuous beams for external loadings and support settlements.														
CO5	CO5 Determine the stresses due to Unsymmetrical bending of beams, locate the shear center, and study the various theories of failure														
				N	IAPP:	ING (OF CO)s WI	TH P	Os ANI	D PSO	5			
				PRO	GRA	M OU	TCO	MES	(POs)					RAM SPI	
COs		T	1	ī			ī	T	T	1	T	1	OUTC	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	3	3	-	1	1	-	-	2	3	3
CO2	-	2	-	2	2	3	-	-	-	-	-	-	3	2	2
CO3	-	3	3	3	2	3	-	-	-	-	2	-	2	3	3
CO4	-	3	2	2	2	-	-	2	-	-	2	1	2	2	1
CO5	-	-	3	3	-	-	-	2	-	-	2	1	2	2	1

CE1304	CONCRETE TECHNOLOGY	L	Т	Р	С				
		3	0	0	3				
OBJECTIVES									
❖ To impa	art knowledge to the students on the properties of materials for concr	rete	by s	suita	able				
tests, mix design for concrete and special concretes									
UNIT I	CONSTITUENT MATERIALS				9				
Cement - Diffe	rent types - Chemical composition and Properties - Hydration of cemen	t - T	ests						
on cement - IS	S Specifications - Aggregates - Classification - Mechanical properties a	nd t	ests	(CO1				
as per BIS - Gr	ading requirements – Water - Quality of water for use in concrete.								
UNIT II	CHEMICAL AND MINERAL ADMIXTURES				9				
Accelerators -	- Retarders - Plasticizers - Super plasticizers - Water proofers -	Mir	neral						
Admixtures like	e Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Meta	akad	oline	(CO2				
- Effects on co	ncrete properties.								
UNIT III	FRESH AND HARDENED PROPERTIES OF CONCRETE				9				
Workability - T	ests for workability of concrete - Segregation and Bleeding - Determir	natic	n of						
strength Prope	erties of Hardened concrete - Compressive strength - split tensile st	renç	yth -	,	03				
Flexural streng	gth - Stress-strain curve for concrete - Modulus of elasticity – dura	abilit	y of	`	,03				
concrete – wat	er absorption – permeability – corrosion test – acid resistance.								
UNIT IV	CONCRETE MIX DESIGN				9				
Principles of I	Mix Proportioning - Properties of concrete related to Mix Design -	Phy	sical						
properties of m	naterials required for Mix Design - Design Mix and Nominal Mix - BIS M	etho	od of	(CO4				
Mix Design – A	Cl Method of Mix Design - Mix Design Examples								
UNIT V	SPECIAL CONCRETES				9				
Light weight co	oncretes - foam concrete- self compacting concrete - vacuum concrete	e -	High						
strength concrete - Fibre reinforced concrete - Ferrocement - Ready mix concrete - SIFCON -									
Shotcrete – Polymer concrete - High performance concrete - Geopolymer Concrete									
	TOTAL	. : 4	5 PE	RIC	DS				

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003
- 3. Bhavikatti.S.S, "Concrete Technology", I.K.International Publishing House Pvt. Ltd., New Delhi, 2015
- 4. Santhakumar. A.R., "Concrete Technology", Oxford University Press India, 2006.

REFERENCE BOOKS

- 1. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London, 1995
- 2. Gambhir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 3. IS10262-2009 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998.
- 4. Job Thomas, "Concrete Technology", Cengage Learning India Pvt. Ltd., Delhi, 2015
- 5. Kumar P Mehta., Paulo J M Monterio., "Concrete Microstructure, Properties and Materials", McGraw Hill Education (India) Private Limited, New Delhi, 2016.

COUR	COURSE OUTCOMES														
Upon completion of the course, students will be able to															
CO1	The va	The various requirements of cement, aggregates and water for making concrete													
CO2	The ef	The effect of admixtures on properties of concrete													
CO3	The pr	The properties of concrete at fresh and hardened state													
CO4	The co	ncept	and p	rocec	lure o	f mix	desig	n as p	er IS	metho	d				
CO5	The im	portar	nce ar	nd app	olication	on of s	specia	al con	cretes	S.					
	MAPPING OF COs WITH POs AND PSOs														
				PRO	GRA	ΜΩI	ITCO	MFS	(POs)				PROGI	RAM SPI	ECIFIC
COs				IKO	UKA	WI OC	100	MILO	(1 Os)				OUTO	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	-	3	3	3	1	-	1	3	1	2	1
CO2	2	1	3	1	-	3	3	3	1	-	1	3	3	3	3
CO3	2	1	3	1	1	2	3	3	1	-	1	3	2	2	1
CO4	2	1	3	1	-	2	3	3	1	-	1	3	2	2	2
CO5	2	1	1	1	1	3	3	3	1	-	1	3	2	2	3

	0 0								
OBJECTIVES									
To introduce the basic concepts of fluid statics, kinematics and dynamics and enable t	hem to								
solve practical problems.									
To study about flow through pipes and pipe networks and boundary layer concepts.									
To understand the application of Dimensional analysis in similitude and model study									
respect to engineering problems.									
UNIT I FLUID PROPERTIES AND STATICS	10								
Scope of fluid mechanics - Definitions of a fluid - Methods of analysis - Continuum hypothesis -									
System and Control volume approach - Fluid properties - Fluid statics - Manometry (Simple									
manometer, Piezometer, U-tube manometer, Differential Manometer: U-Tube Differential	CO1								
manometer, Inverted U-tube differential Manometer) - Forces on plane and curved surfaces -									
Buoyancy and floatation - Stability of floating bodies.									
UNIT II BASIC CONCEPTS OF FLUID FLOW	10								
Kinematics - Classification of flows - Streamline, streak-line and path-lines - Stream function									
and velocity potentials - Flow nets; Dynamics - Application of control volume to continuity,									
energy and momentum - Euler's equation of motion along a stream line - Bernoulli's equation -	CO2								
Applications to velocity and discharge measurements - Linear momentum equation -									
Application to Pipe bends - Moment-of momentum equation.									
UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES	7								
Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi									
theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted	CO3								
models.									
UNIT IV INCOMPRESSIBLE VISCOUS FLOW	10								
Reynolds experiment - Laminar flow in pipes and between parallel plates - Development of									
laminar and turbulent flows in pipes - Darcy-Weisbach equation - Moody diagram - Major and	CO4								
minor losses of flow in pipes - Pipes in series and parallel - Equivalent pipes.									
UNIT V BOUNDARY LAYERS	9								
Definition of boundary layers - Laminar and turbulent boundary layers - Displacement,	CO5								
momentum and energy thickness - Momentum integral equation - Applications.									
TOTAL : 45 PE	RIODS								

FLUID MECHANICS

TEXT BOOKS

CE1305

- 1. Streeter, V.L. Wylie, E. B. and Bedford K.W, Fluid Mechanics. (9th Ed.) Tata McGraw Hill, New Delhi, 2002.
- 2. Modi P.N and Seth Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Book House New Delhi. 2003 (22nd edition, 2019)

REFERENCE BOOKS

- 1. Bansal R K, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2018.
- 2. Rajput, R K, "A text book of Fluid Mechanics", S Chand & Co., New Delhi, 2007(Reprint 2019).
- 3. Subramanya, K, "Fluid Mechanics and Hydraulic Machines Problems and Solutions" Tata McGraw Hill Publishing Company Ltd, New Delhi, 2010.

COUR	SE OU	ГСОМ	ES												
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	be ab	ole to							
CO1	Demor	Demonstrate the difference between solid and fluid, its properties and behaviour in static													
	conditi	conditions.													
CO2	Apply	Apply the conservation laws applicable to fluids and its application through fluid kinematics and													
	dynamics.														
CO3	Formu	Formulate the relationship among the parameters involved in the given fluid phenomenon and													
	to pred	to predict the performances of prototype by model studies.													
CO4		Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes													
	connected in series and parallel.														
CO5	-	Explain the concept of boundary layer and its application to find the drag force excreted by the													
	fluid or	n the fl	at soli	d surf	ace.										
				N	IAPP:	ING (OF CO)s WI	TH P	Os AN	D PSO	S			
				PRO	GRA	M OU	J TCO	MES	(POs)				PROGI	RAM SPI	ECIFIC
COs									. ,				OUTO	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	1	3	3	3	-	-	2	1	-	3	3	3	3
CO2	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
СОЗ	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
CO4	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
CO5	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3

	U	3
OBJECTIVES		
To learn the fundamentals and various methods of plane and geodetic surveying for so	lve	the
real world problems.		
To introduce the concepts of Control Surveying.		
The student is also exposed to the Modern Surveying.		
To learn the various applications of Civil Engineering Surveys.		
UNIT - I FUNDAMENTALS OF CONVENTIONAL SURVEYING		9
Classifications and basic principles of surveying - Equipment and accessories for ranging and		•
chaining - Basic principles Compass surveying - Plane Table Surveying accessories and		
methods - Levels and staves - Methods of levelling - Booking - Reduction - Curvature and	С	:01
refraction correction – Contouring.		
UNIT - II THEODOLITE SURVEYING AND COMPUTATIONS		9
Horizontal and vertical angle measurements by Theodolite - Heights and distances-		
Tacheometric surveying - Trigonometric levelling - Computation of cross sectional areas and	С	02
volumes – Earthwork calculations - Mass haul diagrams.		
UNIT - III CONTROL SURVEYING AND ADJUSTMENT		9
Horizontal and vertical control- Methods - Triangulation - Traversing - Gale's table -		
Trilateration - Concepts of measurements and errors - error propagation and linearization -	С	O 3
adjustment methods – least square methods – angles, lengths and levelling network.		
UNIT - IV ROUTE AND HYDROGRAPHIC SURVEYING		9
Route Surveying - Reconnaissance - Route surveys for highways, railways and waterways -		
Simple curves - Compound and reverse curves - Transition curves - Setting out different		
methods of simple curve - Vertical curves - Hydrographic surveying - Tides - MSL - Sounding	C	04
methods - Three-point problem - Determination of depth and position using multi-beam		
sounder and GPS		
UNIT - V MODERN SURVEYING		9
Total Station: Digital Theodolite, EDM, Electronic field book - Advantages - Parts and		
accessories - working principle - Observables - Errors - COGO functions - Field procedure		
and applications. GPS: Advantages - System components - Signal structure - Selective		
availability and Anti-spoofing - receiver components and antenna - Planning and data	C	O 5
acquisition – Data processing - Errors in GPS – Field procedure and applications.		
TOTAL : 45 PE	राठ	DS

SURVEYING

C

TEXT BOOKS

CE1306

- T.P. Kanetkar and S.V.Kulkarni, Surveying and Levelling, Parts1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008
- 2. Dr.B.C.Punmia, Ashok K.Jain and Arun K Jain, Surveying Vol.I & II, Lakshmi Publications Pvt Ltd, New Delhi, 2005
- S.S.Bhavikatti, Surveying Theory and Practice, I.K.International Publishing House Pvt. Ltd, New Delhi, 2010

REFERENCE BOOKS

1. R. Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.

- James M.Anderson and Edward M. Mikhail, Surveying Theory and Practice, Tata McGraw Hill Education Private Limited, New Delhi, 2012
- 3. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004
- 4. S.K. Roy, Fundamentals of Surveying, Second Edition, Prentice' Hall of India 2004
- 5. K.R. Arora, Surveying Vol I & II, Standard Book house, Twelfth Edition. 2013

Upon completion of the course, students will be able to

CO1	Introduce the rudiments of various surveying and its principles.
CO2	Imparts concepts of Theodolite Surveying and computation of area and volume calculation.
CO3	Understand the procedure for establishing horizontal and vertical control and its adjustment procedure.
CO4	Initiate the knowledge in Route surveying, Hydrographic surveying
CO5	Introduce the basics of Electronic Surveying

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	2	2	1	1	2	1	1	1	1	2	2
CO2	3	2	2	1	2	2	1	1	2	1	1	1	2	2	2
CO3	3	2	1	1	3	1	1	1	1	1	1	2	2	1	2
CO4	1	2	2	1	3	2	1	1	2	1	1	2	3	3	2
CO5	3	2	2	1	3	2	1	1	3	1	1	2	2	2	1

CE1307	STRENGTH OF MATERIALS LABORATORY	L	T	Р	С
		0	0	4	2

OBJECTIVES

- ❖ To make the students understand the mechanical properties of materials when subjected to different types of loading viz., tension, compression, torsion and bending.
- ❖ To know the impact strength and the hardness number of the given material.

EXERCISES

- 1. Tension test on mild steel & RTS rods.
- 2. Torsion test on metals.
- 3. Hardness Test on metals.
 - Rockwell Hardness Test
 - Brinell Harness Test
- 4. Compression test on helical spring.
- 5. Double shear Test on metal.
- 6. Impact test on metal specimen.
 - Izod Test
 - Charpy Test
- 7. Deflection test on metal beam.
- 8. Compression test on wood.

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. Bansal, R.K., "A Text Book of Strength of Materials", Laxmi Publications (P) Ltd., New Delhi, 2010.
- 2. IS1786-2008 (Fourth Revision, Reaffirmed 2013), 'High strength deformed bars and wires for concrete reinforcement Specification', 2008.
- 3. James M. Gere and Stephen P. Timoshenko, "Mechanics of Materials, (3rd edition), McGraw Hill Book Company, Singapore, 2002.
- 4. Rattan SS, "Strength of Material", McGraw Hill Educational Private Limited, India, 2011.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.NO	Description of Equipment	Quantity
1	UTM of minimum 400 kN capacity	1
2	Torsion testing machine	1
3	Hardness testing machine (Rockwell and Brinell)	1 (Each)

4	Impact testing machine	1
5	Beam deflection test apparatus	1
6	Extensometer	1
7	Compressometer	1
8	Dial gauges	Few

Upon completion of the course, students will be able to

CO1	Acquire required knowledge on torsion and tension test on mild steel rod.
CO2	Acquire required knowledge on hardness of different metals.
CO3	Acquire required knowledge on stiffness characteristics of open and closed coil spring.
CO4	Acquire required knowledge about double shear test on metal and impact test on metal.
CO5	Acquire required knowledge on compressive strength of wood and deflection characteristics on steel beam.

MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-
CO2	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-
CO3	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-
CO4	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-
CO5	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-

CE1308	SURVEYING LABORATORY	L	Т	Р	С
		0	0	4	2
00 10000/00					

OBJECTIVES

To familiarize with the various surveying instruments and methods.

EXERCISES

- 1. Finding Pace Value of Surveyor using Chaining and Ranging.
- 2. Mapping of Building with cross staff and without cross staff using Offset.
- 3. Mapping and Area Calculation by using Chain Surveying.
- 4. Setting out works Foundation marking using tapes single Room and Double Room.
- 5. Computation of Included Angle after adjustment of Local Attraction.
- 6. Mapping and Area Calculation by using Compass Surveying.
- 7. Plane Table Surveying (Radiation and Intersection Method)
- 8. Fly leveling using dumpy level.
- 9. Transfer of Bench Mark using Check Levelling.
- 10. Observation of Angles by method of Repetition.
- 11. Observation of Angles by method of Reiteration.
- 12. Determination of elevation of an object using single plane method when base is accessible.
- 13. Determination of elevation of an object using single plane method when base is inaccessible.
- 14. Determination of Tacheometric Constants.
- 15. Heights and distances by stadia Tacheometry.
- 16. Heights and distances by Tangential Tacheometry.

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. T.P.Kanetkar and S.V.Kulkarni, Surveying and Levelling, Parts1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008
- 2. Dr.B.C.Punmia, Ashok K.Jain and Arun K Jain, Surveying Vol.I & II, Lakshmi Publications Pvt Ltd, New Delhi, 2005
- 3. James M.Anderson and Edward M. Mikhail, Surveying Theory and Practice, Tata McGraw Hill Education Private Limited, New Delhi, 2012
- 4. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Chain	6
2	Cross Staff	6
3	Ranging rod	6
4	Metal arrows	6
5	Metallic tape	6
6	Prismatic Compass with stand	3
7	Surveyor Compass with stand	1

	8		Di	umpy	level	with a	alumir	num s	tand a	and aco	cessor	ies		6		
	9								ing st					6		
	10		T	heod	olite v	vith al	uminı	um sta	and a	nd acc	essorie	es		6		
COUR	RSE OU'	TCOM	ES													
Upon	complet	ion of t	he cou	ırse, s	tuden	ts will	l be									
CO1	Use co	onventi	onal s	survey	ing to	ols s	uch a	s chai	in/tape	, com	pass, p	lane ta	able in t	he field	of civil	
COI	engine	engineering applications.														
CO2	Prepare planimetric map															
CO3	Gain knowledge on Height determination by levelling															
CO4	Imparts knowledge in computation of Distance and Elevation using horizontal and vertical angles															
CO5	Establi	sh horiz	zontal	and ve	ertical	contro	ol poin	its.								
				N	IAPP	ING (OF CO)s WI	TH P	Os AN	D PSO	S				
				DDC	ACD A	MOI	TTCO	MEG	(POs)				PROGI	RAM SP	ECIFIC	
COs					OUTO	COMES ((PSOs)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	1	1	3	1	-	-	-	-	-	1	2	1	-	2	
CO2	3	3	1	3	-	1	-	-	-	1	-	3	1	-	2	
CO3	3	1	1	3	1	-	-	-	-	-	1	2	1	-	2	
CO4	3	1	1	3	1	_	-	_	-	_	1	2	1	-	2	

CO5

OBJECTIVES	
To introduce the basic concepts of solving algebraic and transcendental equations.	
To introduce the numerical techniques of interpolation in various intervals in real life	
To acquaint the student with understanding of numerical techniques of differentiation and	
integration this plays an important role in engineering and technology disciplines.	
❖ To acquaint the knowledge of various techniques and methods of solving ordinary difference	ential
equations	
To understand the knowledge of various techniques and methods of solving various type	es of
partial differential equations	
UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS	12
Solution of algebraic and transcendental equations - Fixed point iteration method - Newton	1
Raphson method - Solution of linear system of equations - Gauss elimination method -	
Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel -	CO1
Eigenvalues of a matrix by Power method.	
UNIT II INTERPOLATION AND APPROXIMATION	12
Interpolation with unequal intervals - Lagrange's interpolation – Newton's divided difference	1
	CO2
intervals - Newton's forward and backward difference formulae.	COZ
UNIT III NUMERICAL DIFFERENTIATION ANDINTEGRATION	12
	12
Approximation of derivatives using interpolation polynomials - Numerical integration using	
Trapezoidal, Simpson's 1/3 rule and 3/8 rule – Romberg's Method - Two point and three point	CO3
Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson's	
1/3 rules.	
UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS	12
Single step methods - Taylor's series method - Euler's method - Modified Euler's method -	
Fourth order Runge-Kutta method for solving first order equations-Multistep methods-Milne's	CO4
and Adams - Bash forth predictor corrector methods for solving first order equations.	
UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL	12
DIFFERENTIAL EQUATIONS	
Finite difference methods for solving second order two - point linear boundary value problems -	•
Finite difference techniques for the solution of two dimensional Laplace's and Poisson's	005
equations on rectangular domain – One dimensional heat flow equation by explicit and implicit	CO5
(Crank Nicholson) methods – One dimensional wave equation by explicit method.	

NUMERICAL METHODS

C

0 4

4

TEXT BOOKS

MA1455

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 10th Edition, Cengage Learning, 2017.
- 2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi,2015.

REFERENCE BOOKS

1. Brian Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, Asia, New

- Delhi,2007.
- 2. Gerald. C. F. and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia,7th Edition, New Delhi, 2007.
- 3. Mathews, J.H. "Numerical Methods for Mathematics, Science and Engineering", 2nd Edition, Prentice Hall, 1992.
- 4. Sankara Rao.K.,"Numerical Methods for Scientists and Engineers", PrenticeHallofIndiaPvt. Ltd, 4th Edition, New Delhi,2018.
- 5. Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th Edition, 2015.

implicit method

Upon completion of the course, students will be able to

CO1	Solve algebraic, transcendental equation and system of linear equations compute eigenvalues
001	numerically.
CO2	Interpolate using standard methods like finite difference methods and cubic splines
CO3	Apply Numerical differentiation and integration for the observed data
CO4	Have an insight of finding the numerical solution of first order differential equation by Standard
	single step methods and multi-step methods.
	Understand the finite difference solution of second order ordinary differential equation and get
CO5	the solution of the standard engineering partial differential equation by explicit method and

MAPPING OF COS WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	2	1	0	0	0	0	0	2	2	1	1
CO2	3	2	3	1	2	1	0	0	0	0	1	2	1	2	0
CO3	3	2	2	1	2	1	0	0	0	0	1	2	2	1	1
CO4	3	3	3	2	2	1	0	0	0	0	0	2	1	2	1
CO5	3	3	2	1	2	1	0	0	0	0	0	2	2	1	0

DBJECTIVES To equip the students with the principles and design of water treatment and distribution UNIT I SOURCES OF WATER Public water supply system − Planning, Objectives, Design period, Population forecasting; Water demand − Sources of water and their characteristics, Surface and Groundwater − mpounding Reservoir − Development and selection of source − Source Water quality − Characterization − Significance − Drinking Water quality standards. UNIT II CONVEYANCE FROM THE SOURCE
To equip the students with the principles and design of water treatment and distribution SOURCES OF WATER
Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – mpounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.
Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – mpounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.
Water demand – Sources of water and their characteristics, Surface and Groundwater – mpounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.
mpounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.
Characterization – Significance – Drinking Water quality standards.
JNIT II CONVEYANCE FROM THE SOURCE
Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials –
Hydraulics of flow in pipes – Transmission main design – Laying, jointing and testing of pipes –
appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.
UNIT III WATER TREATMENT
Objectives – Unit operations and processes – Principles, functions, and design of water
reatment plant units, flash mixers, Coagulation and flocculation –Clarifloccuator
sedimentation - filtration - Disinfection – Ground water treatment – aerators, Iron and CO
Manganese removal – Hardness - Softening - Residue Management – Construction, Operation
and Maintenance aspects.
UNIT IV ADVANCED WATER TREATMENT
Adsorption - Desalination - R.O. Plant - demineralization - Adsorption - Ion exchange-
Membrane Systems – RO Reject Management - Iron and Manganese removal - Defluoridation Co.
Construction and Operation & Maintenance aspects – Recent advances.
UNIT V WATER DISTRIBUTION AND SUPPLY
Requirements of water distribution - Components - Selection of pipe material - Service
reservoirs – Functions – Network design – Economics – Analysis of distribution networks –
Computer applications – Appurtenances – Leak detection. Principles of design of water supply Co
n buildings – House service connection – Fixtures and fittings, systems of plumbing and types
of plumbing.
TOTAL : 45 PERIODS

- 1. Garg, S.K. Environmental Engineering, Vol.IKhanna Publishers, New Delhi, 2010.
- 2. Modi, P.N., Water Supply Engineering, Vol.I Standard Book House, New Delhi, 2010.
- 3. Punmia, B.C., Ashok Jain and Arun Jain, Water Supply Engineering, Laxmi Publications (P) Ltd., New Delhi, 2014.

REFERENCE BOOKS

- 1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- 2. Syed R. Qasim and Edward M. Motley Guang Zhu, Water Works Engineering Planning, Design and Operation, Prentice Hall of India Learning Private Limited, New Delhi, 2009.

COUR	SE OU	TCOM	ES													
Upon	comple	etion o	f the	cours	se, st	udent	ts wil	l be a	ble to)						
CO1	Create treatm		•			ıcture	of dri	inking	wate	r supp	ly syst	ems, ir	ncluding	water tra	ansport,	
CO2	Attain	Attain the knowledge in various unit operations and processes in water treatment														
CO3	To des	To design the various functional units in water treatment														
CO4	To und	To understand water quality criteria and standards, and their relation to public health														
CO5	To des	To design and evaluate water supply project alternatives on basis of chosen criteria														
				M	APPI	NG O	F CO	s WI	ГН РС	s ANI) PSO	s				
				PROGI	RAM SP	ECIFIC										
COs		PROGRAM OUTCOMES (POs) OUTCOMES (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	1	1	1	3	-	-	2	-	-	-	1	-	1	
CO2	-	-	1	1	1	2	-	-	1	-	-	-	1	-	1	
CO3	-	-	3	1	1	3	-	-	3	-	-	-	3	-	2	
CO4	-	-	1	1	1	1	-	-	1	-	-	-	1	-	1	
CO5	-	-	3	1	1	1	-	-	1	-	-	-	3	-	1	

CE1403	HIGHWAY ENGINEERING	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To give	an overview on the basics of highway engineering and to impart the v	/aric	ous	oroc	ess
and me	thods involved in the planning, development, design, construction and	Mai	nten	anc	e of
highwa	ys.				
UNIT - I	HIGHWAY PLANNING AND ALIGNMENT				9
History of road	d development in India - Classification of highways - Institutions for I	High	nway	'	
planning, desig	n and construction at different levels - factors influencing highway alig	nme	ent -	ے 🗆	01
Road ecology	- Engineering surveys for alignment, objectives, conventional and	mo	dern	`	,01
methods.					
UNIT - II	GEOMETRIC DESIGN OF HIGHWAYS				9
Typical cross	sections of Urban and Rural roads — Cross sectional elements – Ho	orizo	onta		•
curves, super	elevation, transition curves, widening of curves - Sight distances -	Vei	rtica	ے ا	02
curves, gradie	nts, hairpin bends - Lateral and vertical clearance at underpasses	-	IRC	'	,02
standards-Roa	d signs and safety. Urban utility services.				
UNIT - III	DESIGN OF FLEXIBLE AND RIGID PAVEMENTS				9
Design principl	es – pavement components and their role - Design practice for flexible a	and	rigic		•
pavements (IR	C methods only).			'	CO3
UNIT - IV	HIGHWAY MATERIALS, CONSTRUCTION AND MAINTENANCE				9
Highway const	ruction materials, properties, testing methods - Construction practice of	f fle	xible		
and concrete	pavements including modern materials and methods, Highway dra	inag	ge -	. 0	04
Special consid	erations for hilly roads; Evaluation and Maintenance of pavements.				
UNIT - V	HIGHWAY ECONOMICS AND FINANCE				9
Introduction, F	lighway User Benefits, Highway Costs, Vehicle Operation Costs, Ed	cond	omic	:	
analysis, High	vay projects under Public-Private Sector Participation, Bidding process, I	High	ıway	· c	CO 5
finance.					
	TOTAL	. : 4	5 PE	RIC	DS

- 1. Veeraragavan. A, Khanna.K and Justo.C.E.G. Highway Engineering, Nem Chand & Bros Publishers, 2014
- 2. Subramanian K.P., Highways, Railways, Airport and Harbour Engineering, Scitech Publications (India), Chennai, 2010
- 3. C.Venkatramaiah., Transportation Engineering-Highway Engineering, Universities Press (India) Private Limited, Hyderabad, 2015
- 4. Subhash C Saxena, Textbook of Highway and Traffic Engineering. CBS Publishers, 2017.
- 5. R.Srinivasa Kumar., Textbook of Highway Engineering Universities Press (India) Private Limited, Hyderabad, 2011

REFERENCE BOOKS

- Partha Chakroborty and Animesh Das Principles of Transportation Engineering, PHI Learning Pvt. Ltd., 2005
- 2. Kadiyali. L. R. Principles and Practice of Highway Engineering, Khanna Technical Publications, Delhi, 1997.

- 3. Indian Road Congress (IRC), Guidelines and Special Publications on Planning and Design of Highways.
- 4. Sharma.S.K Principles , Practices and Design of Highway Engineering, S.Chand and Company Ltd.1995

Upon completion of the course, students will be able to

CO1	Understand the concepts and standards adopted in Planning, Design and construction of
	Highways and its related infrastructures.
CO2	Apply the knowledge of science and engineering fundamentals in designing the geometrics for
002	an efficient Highway network and design concepts.
CO3	Designing various types of pavements to meet specified needs of safety, efficiency and long-
	time sustainability by adopting various design standards.
CO4	Select appropriate methods for construction, evaluation and maintenance of roadways.
CO5	Understand the bidding processes and types of highway projects and analyze the economic,
003	financial aspects of the highway projects

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	2	2	3	1	3	1	1	1	1	3	2	2
CO2	3	2	3	1	1	1	1	1	1	1	1	2	3	3	2
CO3	2	3	3	2	2	1	2	3	2	1	2	3	3	3	2
CO4	2	3	2	2	2	3	3	3	1	1	3	3	3	3	3
CO5	1	2	1	1	2	3	1	3	2	1	3	3	2	2	3

CE1404	APPLIED HYDRAULIC ENGINEERING	L	Т	Р	С			
		3	0	0	3			
OBJECTIVES								
To under	erstand the concept of open channel flow characteristics.							
To under	erstand the concept of hydraulic jumps and surges.							
To stud	y the concepts of turbo machinery.							
UNIT I	UNIFORM FLOW				10			
Definition and	differences between pipe flow and open channel flow - Types of	Flo	w –					
Properties of c	ppen channel - Fundamental equations - Sub-critical, Super-critical and	l Cr	itical					
flow - Velocity	distribution in open channel - Steady uniform flow: Chezy equation, I	Man	ning	(CO1			
equation - Bes	st hydraulic sections for uniform flow - Computation in Uniform Flow -	Spe	ecific	:				
energy and spe	ecific force.							
UNIT II	VARIED FLOW				9			
Dynamic equa	tions of gradually varied - Water surface flow profile classifications: H	lydra	aulic					
Slope, Hydraul	lic Curve - Profile determination by Numerical method: Direct step meth	hod	and	(CO2			
Standard step	method – Change in Grades.							
UNIT III	RAPIDLY VARIED FLOWS				8			
Application of t	he momentum equation for RVF - Hydraulic jumps - Types – Energy dis	sipa	ation		CO3			
Positive and	Negative surges.			`	5 03			
UNIT IV	TURBINES				9			
Turbines - Clas	ssification - Impulse turbine – Pelton wheel - Reaction turbines – Francis	s tur	bine					
- Kaplan turbin	e - Draft tube - Cavitation - Performance of turbine - Specific speed - R	luna	ıway	(CO4			
speed.								
UNIT V	PUMPS				9			
Centrifugal pur	mps - Minimum speed to start the pump - NPSH - Cavitations in p	oum	ps -					
Operating characteristics - Multistage pumps - Reciprocating pumps - Negative slip - Indicator								
diagrams and its variations - Air vessels - Savings in work done.								
	TOTAL	: 4	5 PE	RIC	DS			

- 1. Modi, P.N, and Seth S.M.," Hydraulic and Fluid Mechanics", Standard Book House, 2012.
- 2. Jain A. K. "Fluid Mechanics including Hydraulic Machines", Khanna Publishers, 1998.

REFERENCE BOOKS

- 1. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.
- 2. Subramanya K., Flow in open channels, Tata McGraw Hill, New Delhi, 2000.
- 3. Chandramouli P N, Applied Hydraulic Engineering, Yes Dee Publisher, 2017

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Describe the basics of open channel flows, its classifications and analysis of uniform flow in
COT	steady state conditions with specific energy concept and its application
	Analyse steady gradually varied flow, water surface profiles and its length calculation using
CO2	direct and standard step methods with change in water surface profiles due to change in
	grades.

CO3 CO4 CO5	energy loss in hydraulic jump with exposure to positive and negative surges. CO4 Design turbines and explain the working principle Differentiate pumps and explain the working principle with characteristic curves and design centrifugal and reciprocating pumps.														
MAPPING OF COs WITH POs AND PSOs															
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	1	2	2	2	2	1	1	3	1	2	2
CO2	3	3	2	3	2	2	2	2	2	1	1	3	1	2	2
CO3	3	3	2	3	1	2	2	2	2	1	1	3	1	2	3
CO4	3	3	2	3	1	2	2	2	2	1	1	3	1	2	3
CO5	3	3	2	3	1	2	2	2	2	1	1	3	1	2	3

CE1405	STRUCTURAL ANALYSIS – I	L	T	Р	С
		3	0	0	3
OBJECTIVES					
❖ To intr	oduce the students classical methods such that Slope deflection	an	d M	lom	ent
distribu	tion method in analysing indeterminate structures.				
❖ To intrest	oduce the students matrix methods such as Flexibility method and stiff	ness	me	thoc	l in
analysii	ng indeterminate structures.				
UNIT I	STRAIN ENERGY METHOD				9
Determination	of Static and Kinematic Indeterminacies - Analysis of continuous beam	s, p	ane		
frames and ir	ndeterminate plane trusses by strain energy method (up to two de	gree	e of	С	01
redundancy).					
UNIT II	SLOPE DEFLECTION METHOD				9
Slope deflection	n equations – Equilibrium conditions - Analysis of continuous beams a	and	rigid		
frames - Rigio	frames with inclined members - Support settlements- symmetric fram	nes	with	С	02
symmetric and	skew-symmetric loadings.				
UNIT III	MOMENT DISTRIBUTION METHOD				9
Stiffness and	carry over factors - Distribution and carryover of moments - Ana	llysis	s of		
continuous Bea	ams- Plane rigid frames with and without sway – Support settlement - sy	mm	etric	С	O3
frames with sy	mmetric and skew-symmetric loadings.				
UNIT IV	FLEXIBLITY METHOD				9
Primary struct	ures - Compatibility conditions - Formation flexibility matrices - Ana	alysi	s of		
indeterminate	pin- jointed plane frames, continuous beams and rigid jointed plane fra	ame	s by	С	04
direct flexibility	approach.				
UNIT V	STIFFNESS METHOD				9
Restrained str	ructure –Formation of stiffness matrices - equilibrium condition - A	Ana	ysis		05
of Continuous	Beams, Pin-jointed plane frames and rigid frames by direct stiffness meth	nod.			
	TOTAL	: 45	i PEI	RIO	DS

- 1. Bhavikatti, S.S,Structural Analysis,Vol.1,& 2, Vikas Publishing House Pvt.Ltd., NewDelhi-4,2014.
- 2. Bhavikatti, S.S, Matrix Method of Structural Analysis, I. K. International Publishing House Pvt.Ltd.,New Delhi-4, 2014.
- 3. Vazrani.V.N And Ratwani, M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.
- 4. Pandit G.S.and Gupta S.P., Structural Analysis–A Matrix Approach, Tata McGraw Hill Publishing Company Ltd.,2006

REFERENCE BOOKS

- 1. Punmia. B.C, Ashok Kumar Jain & Arun Kumar Jain, Theory of structures, Laxmi Publications, New Delhi, 2004.
- 2. Hibbeler, R.C., Structural Analysis, VII Edition, Prentice Hall, 2012.
- 3. Reddy.C.S, "Basic Structural Analysis", Tata McGraw Hill Publishing Company, 2005.
- 4. Rajasekaran.S, &G.Sankarasubramanian., "Computational Structural Mechanics", PHI
- 5. Learning Pvt. Ltd, 2015

6.	Neo	ıi L.S.a	ınd Ja	ngid I	R.S.,5	Structi	ural A	nalysi	s, Tat	a McG	Fraw H	ill Publ	ishing C	o.Ltd.200)4.	
6. Negi L.S.and Jangid R.S., Structural Analysis, Tata McGraw Hill Publishing Co.Ltd.2004. COURSE OUTCOMES																
Upon completion of the course, students will be able to																
Analyse the continuous beams, pin-jointed indeterminate plane frames and rigid plane frames																
CO1	by stra	by strain energy method														
CO2	Analyse the continuous beams and rigid frames by slope defection method															
	Unders	Understand the concept of moment distribution and analysis of continuous beams and rigid														
CO3	frames	frames with and without sway.														
CO4	Analys	Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using														
CO4	matrix	matrix flexibility method.														
CO5	Unders	Understand the concept of matrix stiffness method and analysis of continuous beams, pin														
003	jointed	jointed trusses and rigid plane frames.														
				M	APPI	NG O	F CO	s WI7	ГН РС	s ANI) PSO	s				
				DDO	CDA	МОЦ	ITCOI	MES	/DOc\				PROGI	RAM SP	ECIFIC	
COs	PROGRAM OUTCOMES (POs) OUTCOMES (PSOs)														PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	1	1	-	-	2	3	1	2	3	2	2	
CO2	3	3	3	2	1	1	-	-	2	3	1	2	3	2	2	
CO3	3	2	1	2	1	1	-	-	2	3	1	2	3	2	2	
CO4	3	3	2	2	1	1	-	-	2	3	1	2	3	2	2	
CO5	3	3	2	2	1	1	-	-	2	3	1	2	3	2	2	

tructural arrangement of grains – description – Classification – BIS – US – Phase relationship tructural arrangement of grains – description – Classification – BIS – US – Phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors of the compaction. International of the compaction Properties – Clay mineralogy Confidencing compaction	OBJECTIVES							
♦ To familiarize the students about the fundamental concepts of compaction, flow through soils. stress transformation, stress distribution, consolidation and shear strength of soils. ♦ To impart knowledge of design of both finite and infinite slopes. Image: I	To impart knowledge to classify the soil based on index properties and to assess	the	əir					
stress transformation, stress distribution, consolidation and shear strength of soils. To impart knowledge of design of both finite and infinite slopes. INIT I SOIL CLASSIFICATION AND COMPACTION Sistory – formation and types of soil – composition - Index properties – clay mineralogy tructural arrangement of grains – description – Classification – BIS – US – Phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction. INIT II EFFECTIVE STRESS AND PERMEABILITY Soil - water – Static pressure in water - Effective stress concepts in soils – Capillary shenomena – Permeability interaction – Hydraulic conductivity – Darcy's law – Determination of Hydraulic Conductivity – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing permeability of soils – Seepage - Two-dimensional flow – Laplace's equation – Introduction to low nets – Simple problems. (Sheet pile and Wier) INIT II STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, ine load and UDL) - Use of New marks influence chart – Components of settlement — memediate and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. – vit and log t methods– e-log p relationship- consolidation settlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear lests – Pore pressure parameters – Cyclic mobility – Liquefaction. INIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Priction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protec	engineering properties based on the classification.							
To impart knowledge of design of both finite and infinite slopes. INIT SOIL CLASSIFICATION AND COMPACTION Silectory – formation and types of soil – composition – Index properties – clay mineralogy tructural arrangement of grains – description – Classification – BIS – US – Phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors of influencing compaction. INIT EFFECTIVE STRESS AND PERMEABILITY Soil – water – Static pressure in water – Effective stress concepts in soils – Capillary shenomena – Permeability interaction – Hydraulic conductivity – Darcy's law – Determination of Hydraulic Conductivity – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing permeability of soils – Seepage – Two-dimensional flow – Laplace's equation – Introduction to low nets – Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT 99 Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, included and UDL) – Use of New marks influence chart – Components of settlement — memediate and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. – √t and log t methods – e-log p relationship – consolidation ettlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL 99 Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Propertice of the strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Propertice of the stability of the stability of the propertice of the propertice of the stability – Liquefaction. INIT V SLOPE STABILITY 99 Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Properticion circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod -	To familiarize the students about the fundamental concepts of compaction, flow through	า รด	il,					
INIT I SOIL CLASSIFICATION AND COMPACTION distory – formation and types of soil – composition - Index properties – clay mineralogy tructural arrangement of grains – description – Classification – BIS – US – Phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction. INIT II EFFECTIVE STRESS AND PERMEABILITY Soil - water – Static pressure in water - Effective stress concepts in soils – Capillary inhenomena – Permeability interaction – Hydraulic conductivity – Darcy's law – Determination of Hydraulic Conductivity – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing between easility of soils – Seepage - Two-dimensional flow – Laplace's equation – Introduction to low nets – Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, inhe load and UDL) - Use of New marks influence chart – Components of settlement — Introduction of rate of settlement. – √t and log t methods – e-log p relationship- consolidation hettlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. INIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Priction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.	stress transformation, stress distribution, consolidation and shear strength of soils.							
tructural arrangement of grains – description – Classification – BIS – US – Phase relationship tructural arrangement of grains – description – Classification – BIS – US – Phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors of the compaction. International of the compaction Properties – Clay mineralogy Confidencing compaction	To impart knowledge of design of both finite and infinite slopes.							
CO1 Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction. CO1 CO1 CO1 CO2 CO2 CO3 CO3 CO3 CO3 CO3 CO3	UNIT I SOIL CLASSIFICATION AND COMPACTION		9					
COmpaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction. INIT EFFECTIVE STRESS AND PERMEABILITY Soil - water – Static pressure in water - Effective stress concepts in soils – Capillary shenomena – Permeability interaction – Hydraulic conductivity – Darcy's law – Determination of Hydraulic Conductivity – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing the problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT 9 Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, intered and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. – \(\frac{1}{2} \) and log t methods – e-log p relationship – consolidation ettlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL 9 Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory –	History - formation and types of soil - composition - Index properties - clay mineralogy							
INIT II EFFECTIVE STRESS AND PERMEABILITY Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary chenomena—Permeability interaction - Hydraulic conductivity - Darcy's law - Determination of Hydraulic Conductivity - Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer - Factors influencing permeability of soils - Seepage - Two-dimensional flow - Laplace's equation - Introduction to low nets - Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium - Boussinesq theory - (Point load, intel load and UDL) - Use of New marks influence chart -Components of settlement — Computation of rate of settlement - Terzaghi's one dimensional consolidation theory - Computation of rate of settlement √t and log t methods— e-log p relationship- consolidation etitlement calculation - Normally Consolidated clays - Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils - Mohr-Coulomb failure theory - Aleasurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests - Pore pressure parameters - Cyclic mobility - Liquefaction. SINIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes - Total stress analysis for saturated clay - Friction circle method - Use of stability number - Method of slices - Fellenius and Bishop's nethod - Slope protection measures.	structural arrangement of grains – description – Classification – BIS – US – Phase relationship	~						
Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary shenomena - Permeability interaction - Hydraulic conductivity - Darcy's law - Determination of Hydraulic Conductivity - Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer - Factors influencing permeability of soils - Seepage - Two-dimensional flow - Laplace's equation - Introduction to low nets - Simple problems. (Sheet pile and Wier) STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium - Boussinesq theory - (Point load, ine load and UDL) - Use of New marks influence chart -Components of settlement - mediate and consolidation settlement - Terzaghi's one dimensional consolidation theory - Computation of rate of settlement √t and log t methods - e-log p relationship - consolidation ettlement calculation - Normally Consolidated clays - Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils - Mohr-Coulomb failure theory - Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests - Pore pressure parameters - Cyclic mobility - Liquefaction. SINIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes - Total stress analysis for saturated clay - Friction circle method - Use of stability number - Method of slices - Fellenius and Bishop's method - Slope protection measures.	- Compaction - theory - laboratory and field technology - field Compaction method - factors	CC) 1					
Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary shenomena- Permeability interaction - Hydraulic conductivity - Darcy's law - Determination of Hydraulic Conductivity - Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer - Factors influencing permeability of soils - Seepage - Two-dimensional flow - Laplace's equation - Introduction to low nets - Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium - Boussinesq theory - (Point load, Line load and UDL) - Use of New marks influence chart -Components of settlement — memediate and consolidation settlement - Terzaghi's one dimensional consolidation theory - Computation of rate of settlement √t and log t methods- e-log p relationship- consolidation lettlement calculation - Normally Consolidated clays - Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils - Mohr-Coulomb failure theory - Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear lests - Pore pressure parameters - Cyclic mobility - Liquefaction. INIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes - Total stress analysis for saturated clay - Friction circle method - Use of stability number - Method of slices - Fellenius and Bishop's method - Slope protection measures.	influencing compaction.							
CO2 Co3 Co3 Co4 Co4 Co4 Co5	UNIT II EFFECTIVE STRESS AND PERMEABILITY		9					
CO2 Co3 Co3 Co4 Co4 Co4 Co5	Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary							
Addraulic Conductivity – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing bermeability of soils – Seepage - Two-dimensional flow – Laplace's equation – Introduction to low nets – Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, Line load and UDL) – Use of New marks influence chart – Components of settlement — Computation of rate of settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. – \(\frac{1}{2}\) t and log t methods – e-log p relationship- consolidation bettlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear lests – Pore pressure parameters – Cyclic mobility – Liquefaction. INIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's method - Slope protection measures.	·							
and field measurement pumping out in unconfined and confined aquifer – Factors influencing bermeability of soils – Seepage - Two-dimensional flow – Laplace's equation – Introduction to low nets – Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, Line load and UDL) - Use of New marks influence chart –Components of settlement — Computation of rate of settlement. – √t and log t methods– e-log p relationship- consolidation bettlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear lests – Pore pressure parameters – Cyclic mobility – Liquefaction. INIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's method - Slope protection measures.	,							
permeability of soils – Seepage - Two-dimensional flow – Laplace's equation – Introduction to low nets – Simple problems. (Sheet pile and Wier) INIT III STRESS DISTRIBUTION AND SETTLEMENT 9 Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, line load and UDL) - Use of New marks influence chart – Components of settlement — mediate and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement √t and log t methods– e-log p relationship- consolidation settlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL 9 Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear lests – Pore pressure parameters – Cyclic mobility – Liquefaction. INIT V SLOPE STABILITY 9 Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Priction circle method – Use of stability number – Method of slices – Fellenius and Bishop's method - Slope protection measures.	· · · · · · · · · · · · · · · · · · ·	CO2						
JNIT III STRESS DISTRIBUTION AND SETTLEMENT Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point load, Line load and UDL) - Use of New marks influence chart –Components of settlement — Computation of rate of settlement √t and log t methods– e-log p relationship- consolidation settlement calculation - Normally Consolidated clays – Over Consolidated clays. JNIT IV SHEAR STRENGTH OF SOIL Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. JNIT V SLOPE STABILITY Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's method - Slope protection measures.								
Stress distribution in homogeneous and isotropic medium — Boussinesq theory — (Point load, ine load and UDL) - Use of New marks influence chart —Components of settlement — mmediate and consolidation settlement — Terzaghi's one dimensional consolidation theory — Computation of rate of settlement √t and log t methods— e-log p relationship- consolidation settlement calculation - Normally Consolidated clays — Over Consolidated clays. Shear strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Least — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Least — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Least — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Least — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Least —								
Stress distribution in homogeneous and isotropic medium — Boussinesq theory — (Point load, Line load and UDL) - Use of New marks influence chart —Components of settlement — mediate and consolidation settlement — Terzaghi's one dimensional consolidation theory — Computation of rate of settlement √t and log t methods— e-log p relationship- consolidation settlement calculation - Normally Consolidated clays — Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL 98	UNIT III STRESS DISTRIBUTION AND SETTI EMENT		9					
tine load and UDL) - Use of New marks influence chart –Components of settlement — mmediate and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement √t and log t methods– e-log p relationship- consolidation settlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV SHEAR STRENGTH OF SOIL 9 Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. INIT V SLOPE STABILITY 9 Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.			_					
mmediate and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement √t and log t methods– e-log p relationship- consolidation settlement calculation - Normally Consolidated clays – Over Consolidated clays. INIT IV								
Computation of rate of settlement √t and log t methods— e-log p relationship- consolidation settlement calculation - Normally Consolidated clays — Over Consolidated clays. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction. Shear Strength of cohesive and cohesion less soils — Mohr-Coulomb failure theory — Code ests — Pore pressure parameters — Cyclic mobility — Liquefaction.	,	CC	าว					
Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. Short V SLOPE STABILITY 9 Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.								
Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. Short V SLOPE STABILITY 9 Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.								
Consider strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. Coal Coal Coal Coal Coal Coal Coal Coal			_					
Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear ests – Pore pressure parameters – Cyclic mobility – Liquefaction. Stability Stability Stability Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.			9					
Pore pressure parameters – Cyclic mobility – Liquefaction. Stope Stability Stability Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.	,							
Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.	·	CC)4					
Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.								
Friction circle method – Use of stability number – Method of slices – Fellenius and Bishop's nethod - Slope protection measures.			9					
nethod - Slope protection measures.								
	·							
	method - Slope protection measures.							
TOTAL : 45 PERIODS	TOTAL : 45 PER	IOD	S					

GEOTECHNICAL ENGINEERING - I

C

3

0

3 0

TEXT BOOKS

CE1406

OBJECTIVES

- Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2015
- 2. Gopal Ranjan and Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Ltd. International Publisher New Delhi (India) 2006
- 3. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 2005

REFERENCE BOOKS

1. McCarthy, D.F., "Essentials of Soil Mechanics and Foundations". Prentice-Hall, 2006

- 2. Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2010
- 3. Das, B.M., "Principles of Geotechnical Engineering". Brooks / Coles / Thompson Learning Singapore, 8th Edition, 2013
- 4. Arora, K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 7th Edition, 2017(Reprint)
- 5. Palanikumar.M., "Soil Mechanics", Prentice Hall of India Pvt. Ltd, Learning Private Limited Delhi, 2013
- 6. Craig.R.F., "Soil Mechanics", E & FN Spon, London and New York, 2012.
- 7. Purushothama Raj. P., "Soil Mechanics and Foundations Engineering",2nd Edition, Pearson Education, 2013
- 8. Venkatramaiah.C., "Geotechnical Engineering", New Age International Pvt. Ltd., New Delhi, 2017

Upon completion of the course, students will be able to

CO1	Demonstrate an ability to identify various types of soils and its properties, familiarize with compaction, formulate and solve engineering Problems
CO2	Show the basic understanding of flow through soil medium and its impact of engineering solution
CO3	Understand about the basic concept of stress distribution in loaded soil medium and soil settlement due to consolidation
CO4	Show the understanding of shear strength of soils and its impact of engineering solutions to the loaded soil medium and also will be aware of contemporary issues on shear strength of soils, and
CO5	Demonstrate an ability to design both finite and infinite slopes, component and process as per needs and specifications.

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO2	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO3	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO4	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO5	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3

CE1407	ADVANCED SURVEYING LABORATORY	L	T	Р	С
		0	0	4	2

- ❖ To familiarize with the various surveying instruments and methods in field.
- ❖ To impart Hands on experience of basics of Total Station.
- To impart Hands on experience of basics of GPS.
- To acquire practical knowledge in the field of Remote Sensing
- To impart Hands on experience of basics of cartography and GIS.

EXERCISES

- 1. Contour Mapping using Grid Levelling.
- 2. Contour Mapping using Radial Levelling.
- 3. Longitudinal and Cross Sectional Levelling- Cut and fill volume calculation.
- 4. Curve Setting By Deflection Angle Method and Two theodolite method.
- 5. Traverse Using Total Station.
- 6.Use of GPS to determine latitude and longitude.
- 7. Traverse Using GPS.
- 8. Preparation of Base Map from Survey of India Topo sheets
- 9. Data Input Onscreen Digitisation Creation of Point, Line and Polygon layers
- 10. Projection, Reprojection and Coordinate Transformation of Maps
- 11. Preparation of Land use/land cover map using Satellite Data.
- 12. Attribute data input and Measurement of Distance, Area
- 13. Data Conversion Vector to Raster and Raster to Vector

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. J. Uren and W.F. Price, Surveying for Engineers, Palgrave macmillan, Fifth Edition, 2010.
- 2. Dr.B.C.Punmia, Ashok K.Jain and Arun K Jain, Surveying Vol.I & II, Lakshmi Publications Pvt Ltd, New Delhi,17th Edition,2016.
- 3. W. Schofield and M. Breach, Elesevier, Engineering Surveying, Sixth Edition, 2007.
- 4. R. Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.
- 5. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004
- 6. S.K. Roy, Fundamentals of Surveying, Second Edition, Prentice' Hall of India 2004
- 7. K.R. Arora, Surveying Vol I & II, Standard Book house, Eleventh Edition. 2013
- 8. T.P.Kanetkar and S.V.Kulkarni, Surveying and Levelling, Parts1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 24th Reprint, 2015.
- 9. Lillesand T.M., and Kiefer,R.W. Remote Sensing and Image interpretation, VI edition of John Wiley & Sons-2015.
- John R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective,
 4th Edition, 2015.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Dumpy level with aluminum stand and accessories	6
2	Aluminum Leveling staff	6
3	Theodolite with aluminum stand and accessories	6
4	Theodolite with aluminum stand and accessories	3
5	Hand Held GPS	3
6	Open Source GIS	-

Upon completion of the course, students will be

CO1	To prepare a Contour map using various methods.
CO2	To establish horizontal and vertical control points using Total Station
CO3	To establish horizontal and vertical control points using GPS.
CO4	To input the data in the GIS and prepare the Map Layout Design process.
CO5	To understand the concepts of Map Projection in GIS.

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	3	1	1	1	1	1	1	1	2	2	1	3
CO2	3	3	1	3	2	1	1	1	1	1	1	3	2	1	3
CO3	3	1	1	3	1	1	1	1	1	1	1	2	2	1	3
CO4	3	1	1	3	1	1	1	1	1	1	1	2	2	1	3
CO5	3	3	1	3	2	1	1	1	1	1	1	3	2	1	3

CE1408	HYDRAULIC ENGINEERING LABORATORY	L	Т	Р	С
		0	0	4	2

To provide hands on experience in calibration of flow meters, performance characteristics of pumps and turbines.

EXERCISES

A. MEASUREMENT OF FLOW PROPERTY

- 1. Determination of coefficient of discharge of orifice.
- 2. Flow measurement in pipe using orificemeter
- 3. Flow measurement in pipe using venturimeter
- 4. Flow measurement in open channel using notches
- 5. Verification of Bernoulli's theorem

B. MEASUREMENT OF LOSSES IN PIPES

- 6. Determination of minor losses in pipes
- 7. Determination of frictional loss in pipes

C. DETERMINATION OF METACENTRIC HEIGHT

8. Determination of metacentric height of a floating body

D. TURBINE CHARACTERISTICS

- 9. Performance test on Pelton wheel turbine
- 10. Performance test on Francis turbine
- 11. Study of impact of jet on vanes

E. PUMP CHARACTERISTICS

- 12. Performance test on multi-stage centrifugal pump
- 13. Performance test on reciprocating pump
- 14. Performance test on submersible pump.

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. Hydraulic Laboratory Manual, Centre for Water Resources, Anna University, 2015.
- 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics. Standard Book House. New Delhi, 2017.
- Subramanya K, Fluid Mechanics and Hydraulic Machines, Tata McGraw Hill Edu. Pvt. Ltd,
 2011

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Closed Circuit Bernoulli's theorem – Verification Apparatus	1 No
2	Closed Circuit Flow through Notch Apparatus	1 No
3	Closed Circuit Hydraulic Flume	1 No
4	Closed Circuit Flow through Orifice & Mouth Piece Apparatus	1 No

5	Closed Circuit Apparatus for Determination of Losses in pipeline due to sudden contraction, Enlargement Bends and Elbow	1 No	
6	Variable Speed Reciprocating Pump	1 No	
7	Constant Speed Centrifugal Pump	1 No	
8	Triple Closed Circuit Gear Oil Pump test rig	1 No	
9	Triple Open Circuit Deep Well Submergible Pump-Test Rig	1 No	
10	Triple Open Circuit Pelton Wheel Turbine Test Rig	1 No	
11	Triple Open Circuit Francis Turbine Test Rig	1 No	
12	Triple Open Circuit Kaplan Turbine Test Rig	1 No	
13	Pipe Friction Apparatus	1 No	
14	Orificemeter	1 No	
15	Venturimeter	1 No	
16	Rotameter	1 No	
17	Pitot Tube Test Setup	1 No	
18	Triple Apparatus for determination of Metacentric Height	1 No	

Upon completion of the course, students will be

CO1	Apply Bernoulli equation for calibration of flow measuring devices.
CO2	Measure friction factor in pipes and compare with Moody diagram
CO3	Determine the performance characteristics of rotodynamic pumps.
CO4	Determine the performance characteristics of positive displacement pumps.
CO5	Determine the performance characteristics of turbines.

MAPPING OF COs WITH POS AND PSOS

	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC			
COs				OUTCOMES (PSOs)													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	2	1	3	1	2	2	2	2	1	1	2	2	1	1		
CO2	3	2	1	3	1	2	2	2	2	1	1	2	3	1	1		
CO3	3	3	2	3	1	2	2	2	3	1	1	2	3	2	1		
CO4	3	3	2	3	1	2	2	2	3	1	1	2	3	2	1		
CO5	3	3	2	3	1	2	2	2	3	1	1	2	3	2	1		

HS1410	PROFESSIONAL SKILLS LAB	L	Т	Р	С
	(Common to AI & DS, CIVIL, CHEMICAL, CSE, EEE & EIE)	0	0	2	1
OBJECTIVES			,		
Enhance	e the Employability and Career Skills of students				
	he students towards grooming as a professional				
	nem Employable Graduates				
·-	their confidence and help them attend interviews successfully.				
LIST OF EXPE	RIMENTS				
UNIT I					6
	Soft Skills- Hard skills & soft skills - employability and career Skills—G		_		
•	nal with values—Making an Oral Presentation–Planning and preparing				
•	Organizing the presentation to suit the audience and context; Connecting			_	:01
	ng presentation; Projecting a positive image while speaking; Emph	nasis	s on		
ettective body	language-General awareness of Current Affairs.				
UNIT II					6
Self-Introduction	on-organizing the material - Introducing oneself to the audience – introdu	ucing	g the	!	
topic - answe	ering questions – individual presentation practice—— Making a Pow	er F	Point		
Presentation -	- Structure and format; Covering elements of an effective presentation	n; E	3ody	,	
language dyn	amics. Making an Oral Presentation-Planning and preparing a	a m	odel	C	02
presentation; C	Organizing the presentation to suit the audience and context; Connecting	with	n the	:	
audience durin	ng presentation; Projecting a positive image while speaking; Emph	nasis	s on		
effective body	anguage				
UNIT III					6
Introduction to	Group Discussion— Participating in group discussions – understanding	ng g	roup)	
dynamics - bra	instorming the topic questioning and clarifying -GD strategies- Struc	ture	and		
dynamics of a	GD; Techniques of effective participation in group discussion; Prepare	aring	g for	. C	O 3
group discussion	on; Accepting others' views / ideas; Arguing against others' views or idea	as, e	tc		
UNIT IV					6
	c speaking; Preparing for a speech; Features of a good speech; Speakir	na w	ith a		
•	-amous speeches may be played as model speeches for learning the	•			
. ,	g). Interview etiquette – dress code – body language – attending job inte				
	be interview -one to one interview &panel interview -Job Interviews: purp				04
	o prepare for an interview; Language and style to be used in an interview				
	estions and how to answer them.	/v, 1	урсз		
•	estions and now to answer them.				_
UNIT V					6
•	differences between groups and teams- managing time managing				
	ofessionally- respecting social protocols understanding career mana ong-term career plan making career changes	igen	nent-	C	:O5
acveloping a ic	mg term career prairing career enangee				

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

1. One Server

- 2. 30 Desktop Computers
- 3. One Hand Mike

4. One LCD Projector

REFERENCE BOOKS

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015
- 2. E. Suresh Kumar et al. Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Raman, Meenakshi and Sangeeta Sharma. Professional Communication. Oxford University Press: Oxford, 2014
- 4. S. Hariharan et al. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students, Orient BalckSwan: Hyderabad, 2016.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Make effective presentations
CO2	Participate confidently in Group Discussions
CO3	Attend job interviews and be successful in them.
CO4	Develop adequate Soft Skills required for the workplace
CO5	Develop their speaking skills to enable them speak fluently in real contexts

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	2	0	2	1	0	0	0	2	3	0	0	1	0	3
CO2	0	2	0	2	0	0	0	0	2	3	0	0	1	0	3
CO3	0	0	0	0	0	0	0	0	2	2	0	0	1	0	2
CO4	0	0	0	0	0	0	0	0	2	2	0	2	1	0	2
CO5	0	2	1	1	2	0	2	0	2	3	0	2	1	0	2

CE1501	STRUCTURAL ANALYSIS – II	Г	Т	Р	С				
		3	0	0	3				
and pla To anal Also to UNIT I Influence lines and bending r	n the method of drawing influence lines and its uses in various application trusses. yse the arches and suspension bridges. learn Plastic analysis of beams and rigid frames. INFLUENCE LINES FOR DETERMINATE BEAMS for reactions in statically determinate beams – Influence lines for she moment – Calculation of critical stress resultants due to concentrativing loads – absolute maximum bending moment - influence lines for the stress resultants.	ar f	orce and		9 301				
forces in pin joi	nted plane frames. INFLUENCE LINES FOR INDETERMINATE BEAMS				_				
_					9				
Muller Breslau's principle– Influence line for Shearing force, Bending Moment and support reaction components of propped cantilever, continuous beams (Redundancy restricted to one), and fixed beams.									
UNIT III	ARCHES				9				
•	s of arches – Analysis of three hinged, two hinged and fixed arches - P ches – Settlement and temperature effects.	aral	bolic	С	:03				
UNIT IV	CABLES AND SUSPENSION BRIDGES			l .	9				
•	cable – length of cable - anchorage of suspension cables – stiffening gee hinged stiffening girders – Influence lines for three hinged stiffening gi	_		C	04				
UNIT V	PLASTIC ANALYSIS				9				
Plastic theory - Statically indeterminate structures - Plastic moment of resistance - Plastic modulus - Shape factor - Load factor - Plastic hinge and mechanism - collapse load - Static and kinematic methods - Upper and lower bound theorems - Plastic analysis of indeterminate beams and frames.									
	TOTAL	: 4	5 PE	RIO	DS				

- 1. Bhavikatti,S.S, Structural Analysis,Vol.1 & 2, Vikas Publishing House Pvt.Ltd.,New Delhi 4, 2014.
- 2. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, Theory of structures, Laxmi, Publications, 2004.
- 3. Vazrani.V.N and Ratwani,M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.

- 1. Negi.L.S and Jangid R.S., Structural Analysis, Tata McGraw-Hill Publishers, 2004.
- 2. Reddy C.S., Basic Structural Analysis, Tata McGraw Hill Publishing Co.Ltd.2002.
- 3. Gambhir.M.L., Fundamentals of Structural Mechanics and Analysis, PHIL earning Pvt. Ltd.,2011.
- 4. Prakash Rao D.S., Structural Analysis, Universities Press, 1996.

COUR	RSE OU'	ГСОМ	ES												
Upon	complet	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to							
CO1	To un	derstar	nd the	met	hod o	of drav	wing i	influer	nce lii	nes ar	nd its u	ıses ir	various	applica	tions in
COI	statica	lly dete	ermina	ate be	ams	and p	in join	ted pl	ane f	rames					
CO2	To un	derstar	nd the	met	hod o	of drav	wing i	influer	nce lii	nes ar	nd its u	ıses ir	various	applica	tions in
002	statica	lly inde	etermi	nate l	oeam	S									
CO3	To understand the various forms of arches and the methods of analysis of the types of arches														
CO4	To have the knowledge on advanced methods of analysis of structures including cable and														
004	suspension bridges														
CO5	To analyse and design various indeterminate beams and frames by plastic analysis														
				N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO	S			
				DDC	CDA	M OU	TCO	MEC	(D (c)				PROGI	RAM SPI	ECIFIC
COs				rku	GNA	WI OC	ico	MES	(FUS)				OUTC	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO2	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO3	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO4	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO5	3	3	3	2	2	2	1	1	3	2	_	2	3	2	2

CE1502	GEOTECHNICAL ENGINEERING II	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To imp	art knowledge to plan and execute a detail site investigation prograi	mme	e, to	sel	lect
geotech	nnical design parameters and type of foundations. Also, to familiarize t	he s	stude	ents	for
the geo	technical design of different type of foundations and retaining walls.				
UNIT I	SITE INVESTIGATION AND SELECTION OF FOUNDATION				9
Scope and ob	jectives – Methods of exploration – Auguring and boring – Wash bor	ring	and		
rotary drilling	- Depth and spacing of bore holes - Soil samples - Representat	ive	and		
undisturbed -	Sampling methods - Split spoon sampler, Thin wall sampler, Stationar	у рі	ston		
sampler - Pen	etration tests (SPT and SCPT) - Data interpretation - Strength parameter	ters	and		:01
•	iquefaction potential - Selection of foundation based on soil condition-				
report.			Ŭ		
UNIT II	SHALLOW FOUNDATION				9
Introduction -	Location and depth of foundation – Codal provisions – Bearing cap	acit	y of	T	
	ation on homogeneous deposits – Terzaghi's formula and BIS formula –		-		
	ng capacity – Bearing capacity from in-situ tests (SPT, SCPT and plate				
•	aring pressure – Seismic considerations in bearing capacity eva		•		02
	of Settlement of foundations on granular and clay deposits – To				
	lement – Allowable settlements – Codal provision – Methods of minimiz				
and differential	·	J			
UNIT III	FOOTINGS AND RAFTS				9
Types of Isolat	ed footing, Combined footing, Mat foundation – Contact pressure and se	ttler	nent	1	
• •	roportioning of foundations for conventional rigid behaviour – Minimum c				
rigid behaviou	r – Applications – Floating foundation – Special foundations – Seism	nic f	orce		O3
•	- Codal provision				
UNIT IV	DEEP FOUNDATION				9
Deep foundation	n-Basics of Caisson and Well Foundation-Types of piles and their fun	ctio	ns –	T	
•	ncing the selection of pile – Carrying capacity of single pile in grant				
	- Static formula – Dynamic formulae (Engineering news and Hiley's) – (
	ts (SPT, SCPT) - Negative skin friction - Uplift capacity- Group cap	•	•		04
	ods (Feld's rule, Converse – Labarre formula and block failure crite				
	pile groups – Interpretation of pile load test (routine test only), Under		•		
	y under compression and uplift – Codal provision.				
UNIT V	RETAINING WALLS				9
Plastic equilibr	ium in soils – Active and passive states – Rankine's theory – Cohesionl	ess	and	T	I
•	· - Coulomb's wedge theory – Condition for critical failure plane – Earth p				
	alls of simple configurations – Culmann Graphical method – Pressure on			(C	O5
•	d – Stability analysis of retaining walls – Codal provision.				
	TOTAL	: 4!	5 PE	RIO	DS

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers and Distributers Ltd., New Delhi, 2015.
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", New Age International

- (P) Ltd, New Delhi, 2006.
- 3. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 16th Edition 2017.

REFERENCE BOOKS

- 1. Arora, K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 7th Edition, 2017 (Reprint).
- 2. Das, B.M. "Principles of Foundation Engineering" (Eigth edition), Thompson Asia Pvt. Ltd., Singapore, 2013.
- 3. Kaniraj, S.R. "Design aids in Soil Mechanics and Foundation Engineering", Tata McGraw Hill publishing company Ltd., New Delhi, 2002.
- 4. Varghese, P.C.,"Foundation Engineering", Prentice Hall of India Private Limited, New Delhi, 2005.
- 5. Joseph E bowles, "Foundation Analysis and design", McGraw Hill Education, 5th Edition, 28th August 2015.
- 6. Relevant IS Codes

COURSE OUTCOMES

Upon completion of the course, students will be

CO1	Planning and executing a detailed site investigation to select geotechnical design parameters
COI	and type of foundation
CO2	Gaining knowledge on bearing capacity of soil and testing methods for settlement in shallow
CO2	foundation
CO3	Designing combined footings and raft foundations, its component or process as per the needs
003	and specifications
CO4	Designing deep foundations, determining the load carrying capacity and settlement of pile
CO4	foundation
CO5	Determining earth pressure on retaining walls and analysis for stability

MAPPING OF COS WITH POS AND PSOS

COs				PRC	GRA	M OU	JTCO	MES	(POs)					RAM SPI COMES (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO2	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO3	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO4	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO5	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3

OBJECTIVES ❖ To introduce the students about planning, design, construction and maintenance and design principles of Railways, Airport and Harbour.									
 ❖ To introduce the students about planning, design, construction and maintenance and design principles of Railways, Airport and Harbour. UNIT I RAILWAY PLANNING 									
principles of Railways, Airport and Harbour. UNIT I RAILWAY PLANNING									
UNIT I RAILWAY PLANNING									
Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, Selection of	10								
gauges - Track Stress, coning of wheels, creep in rails, defects in rails - Route alignment	01								
surveys, conventional and modern methodsGeometric design of railway, gradient, super	٠.								
elevation, widening of gauge on curves- Level Crossings.									
UNIT II RAILWAY CONSTRUCTION AND MAINTENANCE	8								
Earthwork – Stabilization of track on poor soil - Tunneling Methods, drainage and ventilation –									
Calculation of Materials required for track laying - Construction and maintenance of tracks – Construction and maintena	O 2								
Signalling - Railway Station and yards and passenger amenities									
UNIT III AIRPORT PLANNING	9								
Air transport characteristics-airport classification-air port planning: objectives, components,									
layout characteristics, socio-economic characteristics of the Catchment area, airport site	О3								
selection-Orientation of Runways and correction factors as ICAO stipulations, typical Airport	03								
Layouts, parking and Circulation Area.									
UNIT IV AIRPORT DESIGN	9								
Runway Design: Orientation, Wind Rose Diagram, Problems on basic and Actual Length,									
Geometric Design, Configuration and Pavement Design Principles – Elements of Taxiway	O 4								
Design- Airport Zones - Passenger Facilities and Services - Runway and Taxiway Markings.									
UNIT V HARBOUR ENGINEERING	9								
Definition of Basic Terms: Harbour, Port, Satellite Port, Docks, Waves and Tides - Planning									
and Design of Harbours: Requirements, Classification, Location and Design Principles -									
Harbour Layout and Terminal Facilities - Coastal Structures: Piers, Break waters, Wharves,	O 5								
Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport									
- Wave action on Coastal Structures and Coastal Protection Works - Environmental concern									
of Port Operations –Coastal Regulation Zone, 2011									
TOTAL : 45 PERIO									

- 1. Subramanian K.P., Highways, Railways, Airport and Harbour Engineering, Scitech Publications (India), Chennai, 2010
- 2. C.Venkatramaiah., Transportation Engineering-Vol.2 Railways, Airports, Docks and Harbours, Bridges and Tunnels., Universities Press (India) Private Limited, Hyderabad, 2015.
- 3. Vazirani.V.N and Chandola.S.P, "Transportation Engineering-Vol.II", Khanna Publishers,New Delhi, 2015.
- 4. Mundrey J S, Railway Track Engineering, McGraw Hill Education (India) Private Ltd, NewDelhi, 2013.

- 1. Saxena Subhash, C.and Satyapal Arora, ACourse in Railway Engineering, Dhanapat Rai and Sons, Delhi, 1998
- 2. Khanna.S.K. Arora.M.G and Jain.S.S, Airport Planning and Design, Nemachand and Bros, Roorkee, 1994

COUR	SE OU	ГСОМ	ES												
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	l be al	ole to							
CO1	Unders Railwa		he co	ncept	s and	elem	ents i	n Plai	nning,	Desig	n and	constru	uction of		
CO2	Select other in				ods fo	or con	struct	tion ar	nd ma	intena	nce of	Railwa	y tracks	and	
CO3	Understand the concepts and elements in Planning and selection of site for Airport.														
CO4	Design the Runway length and evaluate the orientation of runways														
CO5	Understand the terminologies, infrastructures in Harbour Engineering and Coastal regulations.														
MAPPING OF COs WITH POs AND PSOs															
Cos				PRC	GRA	M OU	JTCO	MES	(POs)					RAM SPI COMES (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	1	3	3	-	-	-	3	2	2
CO2	-	-	3	-	2	2	-	-	-	-	-	2	3	3	3
СОЗ	-	3	3	2	3	-	-	-	3	2	1	2	3	3	2
CO4	3	3	-	2	2	2	-	3	1	2	-	2	2	2	3
CO5	3	2	3	3	-	-	-	-		2	1	-	3	3	3

CE1504	WASTEWATER ENGINEERING	L	Т	Р	С				
		3	0	0	3				
OBJECTIVES									
The ob	ejectives of this course is to help students develop the ability	to a	apply	ba	asic				
underst	anding of physical, chemical, and biological phenomena for suc	cess	ful	desi	gn,				
operatio	on and maintenance of sewage treatment plants.								
UNIT I	PLANNING AND DESIGN OF SEWERAGE SYSTEMS				9				
Characteristics	and composition of sewage - population equivalent -Sanitary sewa	age	flow						
estimation – Se	ewer materials – Hydraulics of flow in sanitary sewers – Sewer design	– S	torm						
drainage -Storr	m runoff estimation – sewer appurtenances – corrosion in sewers – pr	ever	ntion	C	:01				
and control -	sewage pumping-drainage in buildings-plumbing systems for drainage	e - I	Rain						
Water harvestir	ng.								
UNIT II	PRIMARY TREATMENT OF SEWAGE			•	9				
Objectives – L	Init Operations and Processes – Selection of treatment processes -	- Oı	nsite						
sanitation - Septic tank- Grey water harvesting - Primary treatment - Principles, functions and									
design of sewage treatment units - screens - grit chamber-primary sedimentation tanks -									
Construction, C	Operation and Maintenance aspects.								
UNIT III	SECONDARY TREATMENT OF SEWAGE			•	9				
Objectives - S	Selection of Treatment Methods – Principles, Functions, - Activated	Slu	ıdge						
Process and E	xtended aeration systems -Trickling filters- Sequencing Batch Reactor	(SB	R) –						
Membrane Bio	reactor - UASB - Waste Stabilization Ponds - Other treatment me	etho	ds -	C	:03				
Reclamation ar	nd Reuse of sewage - Recent Advances in Sewage Treatment - Cons	struc	tion,						
Operation and	Maintenance aspects.								
UNIT IV	DISPOSAL OF SEWAGE				9				
Standards for D	Disposal - Methods – dilution – Mass balance principle - Self purification	of r	iver-						
Oxygen sag cu	rve – deoxygenation and reaeration - Streeter–Phelps model - Land di	spos	sal –	C	:04				
Sewage farming	g – sodium hazards.								
UNIT V	SLUDGE TREATMENT AND DISPOSAL			•	9				
Objectives - S	Sludge characterization – Thickening - Design of gravity thickener-	Slu	ıdge						
digestion - S	tandard rate and High rate digester design- Biogas recovery -	Slu	ıdge	_	:05				
Conditioning a	nd Dewatering – Sludge drying beds- ultimate residue disposal -	- re	cent	`	, 00				
advances.									
	TOTAL	. : 4	5 PE	RIO	DS				

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K.., Environmental Engineering, Vol.II, Laxmi Publications, 2010

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering-Treatment and Reuse, Tata Mc.Graw-Hill

- Company, New Delhi, 2010.
- 3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C.,2010
- 4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006

Upon completion of the course, students will be able to

CO1	Understand on the characteristics and composition of sewage, ability to estimate sewage generation and
COI	design sewer system including sewage pumping stations
CO2	Select type of treatment system and able to perform basic design of the unit operations that are used in
CO2	sewage treatment. knowledge of septic tank design
CO3	Gain knowledge of selection of treatment process and biological treatment process
CO4	Acquire knowledge of advance treatment technology and reuse of sewage
CO5	Understand the, self-purification of streams and sludge and septage disposal methods.

MAPPING OF COs WITH POS AND PSOS

COs				PRO	GRA	M OU	JTCO	MES	(POs)					RAM SPI COMES (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	-	1	1	3	2	3	3	1	-	3	3
CO2	3	-	3	2	2	3	-	3	2	3	-	2	3	3	3
CO3	3	2	3	2	-	2	-	1	2	3	-	2	3	2	3
CO4	2	-	3	2	3	-	-	1	2	3	2	3	3	2	3
CO5	2	3	3	2	2	-	-	3	3	3	2	3	3	3	3

OBJECTIVES ❖ To introduce the different types of philosophies related to design of basic structural element such as slab, beam, column and footing which form part of any structural system wis reference to Indian standard code of practice. UNIT I DESIGN CONCEPTS AND DESIGN OF BEAMS FOR FLEXURE Design concepts - Concept of elastic method, ultimate load method and limit state method— Advantages of Limit State method over other methods –Design of rectangular beam section by										
 ❖ To introduce the different types of philosophies related to design of basic structural element such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice. UNIT I DESIGN CONCEPTS AND DESIGN OF BEAMS FOR FLEXURE Design concepts - Concept of elastic method, ultimate load method and limit state method—Advantages of Limit State method over other methods—Design of rectangular beam section by 	/ith									
such as slab, beam, column and footing which form part of any structural system wi reference to Indian standard code of practice. UNIT I DESIGN CONCEPTS AND DESIGN OF BEAMS FOR FLEXURE Design concepts - Concept of elastic method, ultimate load method and limit state method— Advantages of Limit State method over other methods—Design of rectangular beam section by	/ith									
reference to Indian standard code of practice. UNIT I DESIGN CONCEPTS AND DESIGN OF BEAMS FOR FLEXURE Design concepts - Concept of elastic method, ultimate load method and limit state method— Advantages of Limit State method over other methods—Design of rectangular beam section by										
UNIT I DESIGN CONCEPTS AND DESIGN OF BEAMS FOR FLEXURE Design concepts - Concept of elastic method, ultimate load method and limit state method— Advantages of Limit State method over other methods—Design of rectangular beam section by	9									
Design concepts - Concept of elastic method, ultimate load method and limit state method— Advantages of Limit State method over other methods—Design of rectangular beam section by	9									
Advantages of Limit State method over other methods –Design of rectangular beam section by										
Advantages of Limit State method over other methods –Design of rectangular beam section by										
working stress method – Limit state method of design of singly reinforced, doubly reinforced	.									
and flanged beams - use of design aids for flexure										
UNIT II LIMIT STATE DESIGN OF BEAMS FOR SHEAR, TORSION AND	9									
SERVICEABILITY										
Limit state design of RC beams for shear and torsion - Design of RC beams for combined										
bending, shear and torsion – Use of design aids - Design requirement for bond and anchorage										
as per IS code - Detailing of reinforcement - Concept of Serviceability - Serviceability										
requirements for deflection.										
UNIT III LIMIT STATE DESIGN OF SLABS AND STAIRCASE	9									
Behaviour of one way and two way slabs - Design of one way simply supported, cantilever and										
Continuous slabs - Design of two-way slabs for various edge conditions - Torsion	О3									
reinforcement at corners - Design of flat slabs - Types of staircases - Design of dog-legged										
staircase.										
UNIT IV LIMIT STATE DESIGN OF COLUMNS	9									
Types of columns –Axially Loaded columns – Design of short Rectangular, Square and Circular										
columns –Design of Slender columns- Design for Uniaxial and Biaxial bending using Column CC	04									
Curves										
UNIT V LIMIT STATE DESIGN OF FOOTINGS	9									
Concepts of Proportioning footings and foundations based on soil properties-Design of wall										
	O5									
footings – Design of Combined Rectangular footing for two columns only.										
TOTAL : 45 PERIOD	DS									

- 1. B.C. Punmia. Ashok K. Jain and Arun K. Jain, Limit State design of Reinforced Concrete, Laxmi Publications (P) Ltd., New Delhi, 2016.
- 2. Gambhir M L, Fundamentals of Structural Steel Design, McGraw Hill Education India Pvt Limited, 2017

- Unnikrishna Pillai and Devdas Menon, Reinforced Concrete Design (Third Edition), Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 3rd Edition, 2017.
- 2. N. Subramanian, Design of Reinforced Concrete Structures, Oxford University Press, New Delhi, 2014.
- 3. P.C. Varghese, Limit State Design of Reinforced Concrete, Prentice Hall of India, Pvt. Ltd., New Delhi, Second Edition, 2008.

4.	S.N	. Sinha	a, Reii	nforce	d Co	ncrete	Desi	gn, Ta	ata M	cGraw	-Hill, N	ew De	lhi, 2002	2	
COUR	SE OU	TCOM	ES												
Upon o	completi	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to							
CO1	Explair	the va	rious	design	conce	epts an	d desi	gn a b	eam u	nder fle	exure a	nd draw	the reinf	orcement	details.
CO2	Design service									nchoraș	ge and	develop	oment len	gth and c	heck the
CO3	Design	Design a RC slab and staircase and draw the reinforcement details.													
CO4	Design columns for axial, uniaxial and biaxial eccentric loadings.														
CO5	CO5 Design of footing by limit state method.														
	MAPPING OF COs WITH POs AND PSOs														
CO				PRO	GRA	M OU	JTCO	MES	(POs)					RAM SPI	
COs		1		1		1	1	ı		1			0010	COMES (PSUS)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO2	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
СОЗ	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO4	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO5	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3

CE1507	ENVIRONMENTAL ENGINEERING LABORATORY	L	Т	Р	С
		0	0	4	2

❖ This subject includes the list of experiments to be conducted for characterization of water and municipal sewage. At the end of the course, the student is expected to be aware of the procedure for quantifying quality parameters for water and sewage.

EXERCISES

- 1. Determination of pH by using pH Meter
- 2. Determination of Turbidity using Turbidity Meter
- 3. Determination of Conductivity
- 4. Determination of Total Hardness
- 5. Determination of Alkalinity and Acidity
- 6. Determination of Chlorides
- 7. Determination of Sulphates
- 8. Determination of Iron and fluoride
- 9. Determination of Available Chlorine in bleaching powder
- 10. Determination of Residual chlorine
- 11. Determination of MPN index of given water sample
- 12. Coagulation and Precipitation process for treating wastewater
- 13. Determination of Phosphates
- 14. Determination of suspended, Volatile, Fixed and Settleable solids in wastewater
- 15. Determination of Dissolved Oxygen for the given sample
- 16. Determination Chemical Oxygen Demand in Wastewater
- 17. Determination of BOD for the given sample
- 18. Determination of SVI of Biological sludge and microscopic examination
- 19. Determination of Concentration of Metal ions using Flame Photometer (Study)
- 20. Determination of various elements using Atomic Absorption Spectroscopy (Study).

TOTAL: 60 PERIODS

REFERENCE BOOKS

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering-Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2010.
- 3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C.,2010
- 4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006
- 5. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Turbidity Meter	1
2	Flame Photometer	1

3	COD Digeter	1	
4	Jar Test Apparatus	2	
5	Dissolved Oxygen Meter	1	
6	Atomic Absorption Spectroscopy	1	
7	BOD Analyser	1	
8	Ion Selective Electrode-Fluoride, Calcium, Nitrate	1	
9	UV-Spectrophotometer	1	
10	Gas Chromotography NETEL Model:9100	1	

Upon completion of the course, students will be

CO1	Quantify the pollutant concentration in water and wastewater
CO2	Suggest the type of treatment required and amount of dosage required for the treatment
CO3	Examine the conditions for the growth of micro-organisms
CO4	Suggest the type of treatment required to reduce e-coli in water
CO5	Compare the analysis of treated water among different treatments

MAPPING OF COs WITH POs AND PSOs

COs				PRO	OGRA	м оц	JTCO	MES	(POs)					RAM SPI COMES (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	-	3	-	-	1	-	-	1	-	-	3	-	2
CO2	-	1	-	1	-	-	3	-	-	1	-	-	1	-	3
CO3	-	3	-	3	-	-	1	-	-	1	-	-	3	-	3
CO4	-	1	-	1	-	-	3	-	-	1	-	-	1	-	3
CO5	-	1	-	1	-	-	1	-	-	1	-	-	1	-	3

CE1508	SOIL MECHANICS LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECTIVES					

- ❖ To develop skills for testing the index and engineering properties of soil
- To characterize and classify the soil based on its properties

EXERCISES

1. DETERMINATION OF INDEX PROPERTIES

- a. Specific gravity of soil
- b. Grain size distribution Sieve analysis
- c. Grain size distribution Hydrometer analysis
- d. Liquid limit and Plastic limit tests
- e. Shrinkage limit and Differential free swell tests

2. DETERMINATION OF INSITU DENSITY AND COMPACTION CHARACTERISTICS

- a. Field density Test (Sand replacement method and core cutter method)
- b. Determination of moisture density relationship using standard Proctor compaction test.
- c. Determination of relative density (Demonstration only)

3. DETERMINATION OF ENGINEERING PROPERTIES

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of Co-efficient of consolidation only)
- c. Direct shear test in cohesionless soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane shear test in cohesive soil
- f. Tri-axial compression test in cohesionless soil (Demonstration only)
- g. California Bearing Ratio Test

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 2010.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) limited publishers, New Delhi, 2008.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1951. Digitized 2008.
- 4. IS Code of Practice (2720) Relevant Parts, as amended from time to time, Bureau of Indian Standards, New Delhi.
- 5. Braja M.Das., "Soil Mechanics: Laboratory Manual", Oxford University Press, eighth edition, 2012.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Density Bottles	3
2	Sieves	2 sets
3	Hydrometer	2 sets
4	Liquid and Plastic limit apparatus	2 sets
5	Shrinkage limit apparatus	3 sets
6	Proctor Compaction apparatus	2 sets
7	UTM of minimum of 20kN capacity	1
8	Direct Shear apparatus	1
9	Thermometer	2
10	Sand replacement method accessories	2
11	Core cutter method accessories	2
12	Tri-axial Shear apparatus	1
13	Three Gang Consolidation test device	1
14	Relative Density apparatus	1
15	Vane Shear apparatus	1
16	Weighing machine – 10 kg capacity	1
17	Weighing machine – 1kg capacity	1
18	Constant Head Permeability apparatus accessories	1 set
19	Falling Head Permeability apparatus accessories	1 set
20	California Bearing Ratio Testing Machine & accessories	1 set

Upon completion of the course, students will be

CO1	Conducting tests to determine the index properties of soils (coarse and fine)
CO2	Classifying soil based on index properties of soils (coarse and fine)
CO3	Determining the insitu density and compaction characteristics
CO4	Conducting tests to determine the compressibility, permeability and shear strength of soils, and
CO5	Characterizing the soil based on its properties

MAPPING OF COs WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	3	1	-	-	-	-	-	1	2	2	-	3
CO2	3	3	1	3	-	1	-	-	-	1	-	3	2	-	3
CO3	3	1	1	3	1	-	-	-	-	-	1	2	2	-	3
CO4	3	1	1	3	1	-	-	-	-	-	1	2	2	-	3
CO5	3	3	1	3	-	1	-	-	-	1	-	3	2	-	3

			_	\vdash	_
		3	0	0	3
OBJECTIVES					
	derstand the needs and mode of irrigation.				
	dy about minimizing water losses and on farm development works.				
	arn the concepts involved in elementary hydraulic design of different str	uctu	ıres	and	eti t
	enance.				
To lea	rn about Irrigation water management.				
UNIT I	PRINCIPLES OF IRRIGATION				9
Need for irrig	ation - Advantages and ill effects - Development of irrigation - Nationa	al W	/ater		
Policy - Tar	nil Nadu scenario - Physical properties of soil that influence soil r	nois	sture		
characteristic	s - Concept of soil water potential and its components - Retention of	wate	er in	(CO1
soils - Conce	ot of available water - Movement of water into and within the soils - Meas	urer	nent		
of soil moistur	re content.				
UNIT II	CROP WATER REQUIREMENT				9
Necessity and	d importance– Crop and crop seasons in India –Duty, Delta, Base Period–	Fac	ctors	\top	
•	-Irrigation efficiencies Consumptive use of water-Irrigation requirements				CO2
	or irrigation water		-		
UNIT III	DIVERSION AND IMPOUNDING STRUCTURES				9
Head works -	Weirs and Barrages –Types of impounding structures - Factors affecting,	loca	ation		
of dams -For	ces on a dam -Design of Gravity dams; Earth dams, Arch dams – Spi	illwa	ıys -	(CO3
Energy dissip	aters				
UNIT IV	CANAL IRRIGATION				9
Classification	of canals- Alignment of canals - Design of irrigation canals- Regime th	neor	ies -		
Canal Head v	vorks – Canal regulators - Canal drops – Cross drainage works – Canal	Out	ılets,		
Escapes -Li	ning and maintenance of canals – Other methods of Irrigation:	Surf	ace,		CO4
Subsurface -	Merits and Demerits.				
UNIT V	IRRIGATION WATER MANAGEMENT				9
Modernization	techniques - Rehabilitation - Command Area Development - Systems	s of	rice		
intensification	- Water delivery systems - Participatory Irrigation Management - F	- arm	ners'	(CO5
organization a	and turn over – Water users' associations - Economic aspects of irrigation.	ı			
	TOTAL	: 4!	5 PE	RIC	DS
	101/12				

IRRIGATION ENGINEERING

TEXT BOOKS

CE1601

- 1. Sharma, R.K., and Sharma, T.K., "Irrigation Engineering", S. Chand and Company, New Delhi, 2008.
- 2. Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 2008.

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2009.
- 2. Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co, New Delhi, 2008.
- 3. Punmia, B.C., "Irrigation and Water Power Engineering", Laxmi Publishers, New Delhi, 2008.

COUR	SE OU	ГСОМ	ES													
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	l be al	ole to								
CO1	Descri	be the	natio	nal wa	ater p	olicy s	structi	ure an	nd soil	plant	water o	charact	eristics			
CO2	Descr	Describe the basics of requirements and estimation of crop water														
CO3	Design the various types of hydraulic structure includes dams, spillways and dissipaters															
CO4	Design the components of irrigation canal includes canal drops and cross															
CO5		Apply the concepts of Irrigation water management, water user association for participatory irrigation management														
				N	IAPP	ING (OF CO	Os WI	TH P	Os ANI	D PSO	S				
					PROGRAM SPECIFIC											
COs					OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	2		2	-	3	-	3	-	2	3	2	-	
CO2	-	1	3	-	2	-	-	3	2	-	2	2	3	3	-	
CO3	3	3	-	3		3	-	-	-	-	3	-	3	3	2	
CO4	3	3	-	-	-	3	-	-	-	-	3	-	3	3	2	
CO5	-	1	-	2	2	3	-	1	3	3	3	-	3	2	2	

CE1602	CONSTRUCTION MANAGEMENT	L	Т	Р	С
		3	0	0	3
	te the students to learn about planning of construction projects, schedul hniques, cost and quality control projects and use of project information.	_	-		
UNIT I	CONSTRUCTION PLANNING				9
Construction m	ts in the development of construction plans-Choice of Technolo nethod-Defining Work Tasks- Work breakdown structure- Definition- Precent mong activities-Estimating Activity Durations-Estimating Resource Requires-coding systems.	cede	ence	٠	:01
UNIT II	SCHEDULING PROCEDURES AND TECHNIQUES				9
critical path so scheduling for with leads, la constraints an uncertain dura	construction schedules-Bar charts - The critical path method-Calculat heduling-Activity float and schedules-Presenting project schedules-Critic Activity-on-node and with leads, Lags and Windows-Calculations for schags and windows-Resource oriented scheduling-Scheduling with red precedence's -Use of Advanced Scheduling Techniques-Schedulitions-Crashing and time/cost tradeoffs -Improving the Scheduling proapplication software.	cal nedu eso ng	path uling urce with	c	:02
UNIT III	COST CONTROL MONITORING AND ACCOUNTING				9
	rol problem-The project budget-Forecasting for Activity cost control - for stems and cost accounts-Control of project cash flows-Schedule				:03
UNIT IV	QUALITY CONTROL AND SAFETY IN CONSTRUCTION				9
Material Speci Quality contro	afety Concerns in Construction-Organizing for Quality and Safety-Wolfications-Total Quality control-Quality control by statistical methods -Sill with Sampling by Attributes-Statistical Quality control by Samplity in Construction.	tatis	stical		:04
UNIT V	ORGANIZATION AND PROJECT INFORMATION SYSTEM				9
use of Informa conceptual Mo	ct information-Accuracy and Use of Information-Computerized organization - Organizing information in databases-relational model of Data base dels of Databases-Centralized database Management systems-Databasegrams-Information transfer and Flow.	es-C	ther	. _	:05
	TOTAL	: 4	5 PE	RIO	DS

- Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw Hill Publishing Co., New Delhi, 2014
- 2. Srinath, L.S., "Pert and CPM Principles and Applications", Affiliated East West Press, 2001.
- 3. Albert Lester, Project Management, Planning and Control, 7th Edition, Butterworth-Heinemann, USA, 2017.

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals
- 2. Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 3. Moder.J., Phillips. C. and Davis E, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., 3rd Edition, 1985.
- 4. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons, 1986.
- 5. Halpin, D.W., "Financial and Cost Concepts for Construction Management", John Wiley and Sons, New York, 1985.

Upon completion of the course, students will be able to

CO1	Acquire basic concepts of construction planning.
CO2	Schedule the construction activities using critical path method.
CO3	Forecast and control the cost in a construction using various tools.
CO4	Recognize the various quality control tool required in the construction Industry.
CO5	Explain the different databases that can be maintained in a construction industry using computers.

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	3	1	-	-	-	3	-	3	2	-
CO2	-	3	3	-	3	-	1	-	-	-	3	-	3	2	3
CO3	-	3	-	-	3	-	1	-	-	-	3	-	-	2	-
CO4	3	-	-	-	3	1	1	-	-	-	2	-	-	-	-
CO5	1	2	3	-	3	1	1	-	-	-	2	-	-	3	-

CE1603	DESIGN OF STEEL STRUCTURES L		T	Р	С
	3		0	0	3
compre To prov	oduce the students to limit state design of structural steel members ssive, tensile and bending loads, including connections. Vide the students the tools necessary for designing structural systems and gantry girders as per provisions of current code (IS 800 - 2007) of practical systems.	suc	ch a		
UNIT I	INTRODUCTION AND ALLOWABLE STRESS DESIGN				9
products- Step Type of Loads and Specificati Steel structures Allowable stres and Shear -Cl	types – Mechanical Properties of structural steel- Indian structural sinvolved in the Deign Process -Steel Structural systems and their Element on Structures and Load combinations- Code of practices, Loading stantons - Concept of Allowable Stress Method, and Limit State Design Methos-Relative advantages and Limitations-Strengths and Serviceability Limit stress as per IS 800 section 11 -Concepts of Allowable stress design for beineck for Elastic deflection-Calculation of moment carrying capacity –Despet of Solid Het Belled section became Allowable stress design of Angle Teachers	ents da ds ate nd	s rds for es. ling	C	:01
	orted Solid Hot Rolled section beams-Allowable stress deign of Angle Telion Members and estimation of axial load carrying capacity.	ens	ion		
UNIT II	CONNECTIONS				9
	ole and eccentric Bolted and welded connections - Types of failure and effice a section - Introduction to HSFG bolts	ciei	ncy	С	02
UNIT III	TENSION MEMBERS			ı	9
modes of failure Tee in tension	ers - Types of Tension members and sections –Behavior of Tension Members-Slenderness ratio- Net area – Net effective sections for Plates, Angle –Concepts of Shear Lag- Design of plate and angle tension members-design Members-Connections in tension members – Use of lug angles – Des	s a	and n of	С	:О3
UNIT IV	COMPRESSION MEMBERS				9
Types of comp columns- Curre ratio –Column Axially Loaded	ression members and sections—Behavior and types of failures-Short and slent code provisions for compression members- Effective Length, Slende formula and column curves- Design of single section and compound Ai solid section Columns- Design of Built up Laced and Battened type column bases — Plate and Gusseted bases for Axially loaded columns- Splic	rne ngl nn	ess es- s –	С	GO4
UNIT V	FLEXURAL MEMBERS			1	9
of cross section Buckling, Cripp solid rolled sec Laterally unsup	Beam sections- Behaviour of Beams in flexure- Codal Provisions – Classificans- Flexural Strength and Lateral stability of Beams –Shear Strength oling and defection of Beams- Design of laterally supported Beams- Design Beams- Design of Plated beams with cover plates - Design Strength Design of Design of Laterally unsupported rolled section Beams- Purported Beams – Design of Laterally unsupported rolled section Beams- Purported Polymonth (Company)	ign gth Irlir	leb of of of	C	:05

1. Duggal S.K., Design of Steel Structures, Tata McGraw Hill, Publishing Co. Ltd., New Delhi,

2010

2. Bhavikatti S.S, Design of Steel Structures, Ik International Publishing House, New Delhi, 2017.

REFERENCE BOOKS

- 1. Gambhir M L, Fundamentals of Structural Steel Design, McGraw Hill Education India Pvt Limited, 2013
- 2. Jack C. McCormac and Stephen F Csernak, Structural Steel Design, Pearson Education Limited, 2013.
- 3. Sarwar Alam Raz, Structural Design in Steel, New Age International Publishers, 2014
- 4. Subramanian N, Design of Steel Structures, Oxford University Press, New Delhi, 2016

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Familiarize with the aspects of structural behavior of steel structures, Design philosophies
CO2	Understand the design problems in bolted, riveted and welded connections
CO3	Analyze and design most suitable section for tension members and tension splices
CO4	Analyze and design most suitable section for compression members and column bases
CO5	Undertake design problems on beams – laterally supported and unsupported. and to analyze and design
003	roof trusses and industrial trusses

MAPPING OF COS WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													PSO2	PSO3
CO1	3	3	3	2	-	-	-	1	1	-	-	-	3	3	2
CO2	3	3	3	2	-	-	-	2	1	-	-	-	3	3	2
CO3	3	3	3	2	-	-	-	2	1	-	-	-	3	3	2
CO4	3	3	3	2	-	-	-	2	1	-	-	-	3	3	2
CO5	3	3	3	2	-	-	-	2	1	-	-	-	3	3	2

CE1607	CONSTRUCTION MATERIALS AND HIGHWAY ENGINEERING LABORATORY	L	Т	Р	С
		0	0	4	2

❖ To learn the principles and procedures of testing Construction Materials and Highway materials and to get hands on experience by conducting the tests and evolving inferences.

EXERCISES

I.TESTS ON CEMENT AND AGGREGATES

- a. Consistency and setting time
- b. Specific Gravity
- c. Gradation of Aggregate
- d. Crushing Strength
- e. Abrasion Value
- f. Impact Value
- g. Water Absorption
- h. Flakiness and Elongation Indices

II.TESTS ON FRESH CONCRETE

- a. Slump cone test
- b. Flow table
- c. Compaction factor
- d. Vee bee test.

III.TESTS ON HARDENED CONCRETE

- a. Compressive strength Cube & Cylinder
- b. Flexure test
- c. Modulus of Elasticity

IV .TESTS ON BITUMEN

- a. Penetration
- b. Softening Point
- c. Ductility
- d. Flash and fire points.
- e. Viscosity
- f. Density

V. TESTS ON BITUMINOUS MIXES

- a. Determination of Binder Content
- b. Marshall Stability and Flow values

TOTAL: 60 PERIODS

- 1. IS 4031 (Part 1) 1996 Indian Standard Method for determination of fineness by drysieving.
- 2. IS 2386 (Part 1 to Part 6) 1963 Indian Standard methods for test for aggregate for concrete

- 3. IS 383 1970 Indian Standard specification for coarse and fine aggregates from natural sources for concrete.
- 4. Highway Materials and Pavement Testing, Nem Chand and Bros., Roorkee, Revised Fifth Edition, 2009
- 5. Methods for testing tar and bituminous materials, IS 1201–1978 to IS 1220– 1978, Bureau of Indian Standards
- 6. Methods of test for aggregates, IS 2386 1978, Bureau of Indian Standards
- 7. Mix Design Methods Asphalt Institute Manual Series No. 2, Sixth Edition,1997, Lexington, KY, USA.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1.	Concrete cube moulds	6
2.	Concrete cylinder moulds	3
3.	Concrete Prism moulds	3
4.	Sieves	2 sets
5.	Concrete Mixer	1
6.	Slump cone	3
7.	Flow table	1
8.	Vibrator	1
9.	Trovels and planers	1 set
10.	UTM – 400 kN capacity	1
11.	Vee Bee Consistometer	1
12.	Aggregate impact testing machine	1
13.	Blains Apparatus	1
14.	Los - Angeles abrasion testing machine	1
15.	Length gauge	2
16.	Thickness gauge	2
17.	Compressometer	1
18.	Marshall Stability Apparatus	1
19.	Penetrometer	1
20.	Tar Viscometer	1
21.	Ring and Ball Apparatus	1
22.	Ductility Testing Machine	1
23.	Centrifuge Extractor - (Motorized)	1
24.	Flash & Fire Point Apparatus	1
25.	Vicat apparatus	3
26.	Mortor cubes	6

COUR	COURSE OUTCOMES														
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to							
CO1															
CO2	To do	To do tests on fresh concrete as per IS codes of practice													
CO3	To do tests on hardened as per IS codes of practice														
CO4	To do tests on bitumen as per IS codes of practice														
CO5	CO5 To gain knowledge on bituminous design mix														
	MAPPING OF COs WITH POs AND PSOs														
	PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC														ECIFIC
COs				OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	2	2	2	1	1	2	2	2	-	2
CO2	3	2	1	1	1	1	3	2	1	1	2	3	3	-	3
CO3	3	2	2	1	1	2	3	2	1	1	2	3	3	-	3
CO4	3	1	1	1	1	2	3	2	1	1	2	2	2	-	2
CO5	2	1	2	1	1	2	2	1	1	1	1	1	3	-	2

CE1608	COMPUTER AIDED BUILDING AND STRUCTURAL DRAWING	L	Т	Р	С
	LABORATORY				
		0	0	4	2

❖ To impart knowledge and skill relevant to Building and Structural detailed drawing using computer software

EXERCISES

- 1. Design and Detailed Structural Drawing of RC Elements (slab, beam and column)
- 2. Design and Detailed Structural Drawing of footings (Isolated and combined footings)
- 3. Design and Detailed Structural Drawing of RC water tanks (circular, rectangular)
- 4. Design and Detailed Structural Drawing of Retaining walls (cantilever, counterfort)
- 5. Design and Drawing of Steel structures (beam-column connections)
- 6. Design and Drawing of Steel water tank with hemispherical bottom

TOTAL: 60 PERIODS

REFERENCE BOOKS

- 1. Krishnamurthy, D., "Structural Design & Drawing Vol. II and III, CBS Publishers, 2010.
- 2. Shah V L and Veena Gore, "Limit State Design of Steel Structures" IS800-2007, Structures Publications, 2009.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Models of Structures	1 each
2	Computers Pentium IV	30 Nos
3	Analysis and Design Software - Minimum 5 use License	1 No

COURSE OUTCOMES

Upon completion of the course, students will be able to

Draw structural detailing of RCC Elements
Draw the structural detailing of RCC Water tanks
Draw the structural detailing of RCC footings
Draw the structural detailing of RCC retaining walls
Draw the structural detailing of steel structures

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2		

CO2	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO3	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO4	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO5	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2

CE1701	ESTIMATION, COSTING AND VALUATION ENGINEERING L	Т	Р	С					
	3	0	0	3					
•	art knowledge in estimation, tender practices, contract procedures, and valua ering works.	tion (of C	Sivil					
UNIT I	QUANTITY ESTIMATION			9					
Philosophy – Purpose – Methods of estimation – Types of estimates – Approximate estimates – Detailed estimate – Estimation of quantities for buildings, Septic tank, roads and retaining wall									
UNIT II	RATE ANALYSIS AND COSTING			9					
Hours and Ma Computer soft	Standard Data – Observed Data – Schedule of rates – Market rates – Assessment of Man Hours and Machineries for common civil works – Rate Analysis – Cost Estimates using Computer softwares.								
UNIT III	SPECIFICATIONS, REPORTS AND TENDERS			9					
specifications Culvert – Roa	 Detailed and general specifications – Constructions – Sources – Types Principles for report preparation – report on estimate of residential building ds - TTT Act 2000 – Tender notices – types – tender procedures – Draf , E-tendering-Digital signature certificates- Encrypting -Decrypting – Reve 	g – ting	С	:О3					
UNIT IV	CONTRACTS			9					
Contract – Types of contracts – Formation of contract – Contract conditions – Contract for labour, material, design, construction – Drafting of contract documents based on IBRD / MORTH Standard bidding documents – Construction contracts – Contract problems – Arbitration and legal requirements									
UNIT V	VALUATION			9					
	Definitions – Various types of valuations – Valuation methods – Valuation of land – Buildings – Valuation of plant and machineries - Calculation of Standard rent – Mortgage – Lease.								
	TOTAL : 45	PE	RIO	DS					

- B.N Dutta 'Estimating and Costing in Civil Engineering', UBS Publishers & Distributors (P)
 Ltd, 2010.
- 2. B.S.Patil, 'Civil Engineering Contracts and Estimates', University Press, 2006

REFERENCE BOOKS

- 1. Hand Book of Consolidated Data 8/2000, Vol.1, TNPWD
- 2. Tamil Nadu Transparencies in Tenders Act, 2000
- 3. Standard Databook for analysis and rates
- 4. Standard Bid Evaluation Form, Procurement of Good or Works, The World Bank, April 1996

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Explain the basic concept of quantity estimation for building, roads, canals and hydraulic structures by manual and software packages

CO2	_	Acquire the knowledge to calculate rate analysis and man-hours required for the common civil works by manual and software packages																
CO3		Develop the specification for the materials used in construction, online and offline tender procedures and tender document preparation and report preparation.																
CO4	Acquir	Acquire the knowledge of construction contracts and contract document preparation.																
CO5	Identify lease.	Identify the valuation for building, land and plant and machineries, calculation of rent, mortgage and lease.																
MAPPING OF COs WITH POs AND PSOs																		
COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2			
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2			
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2			
COS							1			1	1	1	†	 	 			
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1			

CE1702	ASEISMIC DESIGN OF STRUCTURES	L	Т	Р	С		
		3	0	0	3		
structur UNIT I Definition of d (SDOF) system Principles - Effe Response to UNIT II Formulation of natural freque	erstand the behaviour of structures under dynamic, earthquake loading es as earthquake resistant as per codal provisions. SINGLE DEGREE OF FREEDOM SYSTEM egree of freedom – Idealization of structure as Single Degree of Fin – Formulation of equation of motion for various SDOF system – D'Allect of damping – Free and forced vibration of damped and undamped st harmonic forces and periodic loading. MULTI DEGREE OF FREEDOM SYSTEM equation of motion for multidegree of freedom (MDOF) system – Evaluation of modes – Eigen values and Eigen vectors – Orthogonatiples – Response to free and forced vibration of undamped and damped	ree emb ruct uatio	dom perts ures on of and	C	the 9 CO1 9		
* *	lal superposition methods INTRODUCTION TO EARTHQUAKE ENGINEERING	J 1911			9		
Elements of Er	ngineering Seismology – Definitions, Introduction to Seismic hazard, Ear – Seismotectonics – Seismic Instrumentation – Characteristics of otion – Estimation of Earthquake Parameters – Soil Structure Interaction.	St			03		
UNIT IV	EARTHQUAKE EFFECTS ON STRUCTURES				9		
Concrete Struc	uake on different types of structures – Behaviour of RCC, Steel and presentures under earthquake loading – Pinching Effect – Bouchinger Effect – Bouchinger Effect – Response Spectra – Causes of damage – Lessons learnt fr	ffec	ts -		04		
UNIT V	CONCEPTS OF EARTHQUAKE RESISTANT DESIGN				9		
Planning considerations and Architectural concepts – Evaluation of Earthquake forces – Static load method, Response spectrum method – Guidelines for Earthquake resistant design – Earthquake resistant design of masonry and RCC buildings - Design considerations – Guidelines – Design and detailing							
	TOTAL	. : 4	5 PE	RIC	DS		

- 1. Mario Paz, Structural Dynamics Theory and Computations, Fifth Edition 2nd printing, CBS publishers, 2006.
- 2. Agarwal.P and Shrikhande.M. Earthquake Resistant Design of Structures, Prentice Hall of India Pvt. Ltd. 2011.

- Clough.R.W, and Penzien.J, Dynamics of Structures, Second Edition, McGraw Hill International Edition, 1995.138
- 2. Minoru Wakabayashi, Design of Earthquake Resistant Buildings, Mc Graw Hill Book Company, 1986.
- 3. Anil K Chopra, Dynamics of structures Theory and applications to Earthquake Engineering, Prentice Hall Inc., 2007.

- 4. Moorthy.C.V.R., Earthquake Tips, NICEE, IIT Kanpur,2002.
- 5. IS 4326: 2013 Earthquake Resistant Design And Construction Of Buildings Code Of Practice
- 6. IS 1893: 2016 Criteria For Earthquake Resistant Design Of Structures Part 1 General Provision And Buildings.
- 7. IS 13920:2016 Ductile Design And Detailing Of Reinforced Concrete Structures Subjected To Seismic Forces Code Of Practice.

Upon completion of the course, students will be able to

CO1	Apply the knowledge of science and engineering fundamentals to idealize and formulate the equations of motion for SDOF system
CO2	Develop the equations of motion for MDOF system and to evaluate the natural frequencies and mode shapes.
CO3	Explain the elements of engineering seismology, characteristics of earthquake and seismic instrumentation.
CO4	To identify the various causes and effects of earthquakes on structures due to past earthquakes.
CO5	To analyse the structures subjected to dynamic loading and to design for seismic loading as per codal provisions.

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	3	2	1	3	1	-	1	3	2	1
CO2	3	3	3	2	2	3	2	1	3	1	-	1	3	2	1
CO3	3	1	1	1	-	3	1	2	1	-	-	1	3	2	1
CO4	3	2	3	2	2	3	2	3	3	3	2	1	3	2	1
CO5	3	3	3	3	3	3	2	3	3	3	2	1	3	2	1

CE1708	IRRIGATION AND ENVIRONMENTAL ENGINEERING DRAWING	L	Т	Р	С
		0	0	4	2

❖ At the end of the semester, the student shall conceive, design and draw the irrigation and environmental engineering structures in detail showing the plan, elevation and sections.

EXERCISES

PART A: IRRIGATION ENGINEERING

1. TANK COMPONENTS

q

Fundamentals of design - Tank surplus weir – Tank sluice with tower head - Drawings showing foundation details, plan and elevation.

2. IMPOUNDING STRUCTURES

6

Design principles - Earth dam - Profile of Gravity Dam

3. CROSS DRAINAGE WORKS

6

General design principles - Aqueducts – Syphon aqueduct (Type III) – Canal drop (Notch Type)

Drawing showing plan, elevation and foundation details.

4. CANAL REGULATION STRUCTURES

a

General Principles - Direct Sluice - Canal regulator - Drawing showing detailed plan, elevation and foundation details.

PART B: ENVIRONMENTAL ENGINEERING

1. WATER SUPPLY AND TREATMENT

10

Design and Drawing of flash mixer, clari-flocculator – Rapid sand filter – Pressure sand filter-Service reservoirs – House service connection for water supply and drainage.

2. SEWAGE TREATMENT & DISPOSAL

20

Design and Drawing of screen chamber - Grit channel - Primary clarifier - Activated sludge process - Sequencing Batch reactor - Trickling filter - Waste stabilization ponds - Anaerobic sludge digester - Sludge drying beds -- Septic tanks and disposal arrangements.

TOTAL: 60 PERIODS

- Satya Narayana Murthy Challa, "Water Resources Engineering: Principles and Practice", New Age International Publishers, New Delhi, 2002.
- 2. Garg, S.K., "Irrigation Engineering and Design of Structures", New Age International Publishers, New Delhi, 1997.
- 3. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999.
- 4. Manual on "Sewerage and Sewage Treatment Systems- Part A, B and C" CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.

- 5. Qasim,S.R., Motley, E.M and Zhu.G. "Water works Engineering Planning, Design and Operation", Prentice Hall, New Delhi, 2009.
- 6. Qasim, S. R. "Wastewater Treatment Plants, Planning, Design & Operation", CRC Press, New York, 2010

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
	NA	

COURSE OUTCOMES

Upon completion of the course, students will be

o poir	
CO1	Design and draw tank surplus weir and tank sluice with tower head, earth dam and its profile
CO2	Design and draw -Aqueducts – Syphon aqueduct (Type III) – Canal drop (Notch Type)
CO3	Design and draw - Direct Sluice - Canal regulator
CO4	Design and draw flash mixer, flocculator, clarifier - Rapid sand filter - Service reservoirs -
CO4	Pumping station – House service connection for water supply and drainage.
	Design and draw screen chamber - Grit channel - Primary clarifier - Activated sludge process -
CO5	Aeration tank – Trickling filter – Sludge digester – Sludge drying beds – Septic tanks and
	disposal arrangements.

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO1	PSO2	PSO3
CO1	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
CO2	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
СОЗ	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
CO4	3	1	3	3	-	-	-	-	-	-	-	-	3	2	
CO5	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2

CE1709	DESIGN PROJECT	L	Т	Р	С
		0	0	4	2

OBJECTIVES

The objective of this course is to impart and improve the design capability of the student. This course conceives purely a design problem in any one of the disciplines of Civil Engineering; e.g., Design of an RC structure, Design of a waste water treatment plant, Design of a foundation system, Design of traffic intersection etc. The design problem can be allotted to either an individual student or a group of students comprising of not more than four. At the end of the course the group should submit a complete report on the design problem consisting of the data given, the design calculations, specifications if any and complete set of drawings which follow the design.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Design any of the Civil Engineering structure
CO2	Interpret data, and synthesis the information to provide valid conclusions.
CO3	Apply appropriate techniques, modern Engineering tools to engineering activities.
CO4	Communicate effectively, manage the team or partner
CO5	Apply ethical principles and commit to professional ethics and responsibilities.

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1														PSO3		
CO1	3	3	2	2	3	2	1	3	2	2	3	2	2	1	3		
CO2	3	3	2	2	3	2	1	3	2	2	3	2	2	1	3		
CO3	3	3	2	2	3	2	1	2	2	3	3	2	1	1	3		
CO4	3	3	2	2	3	2	1	2	2	3	3	2	1	1	3		
CO5	3	3	2	2	3	2	1	2	2	3	3	2	1 1 3				

CE1807	PROJECT WORK	L	Т	Р	С
		0	0	20	10

OBJECTIVES

❖ To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

STRATEGY:

The student works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction. The student will be evaluated based on the report and the viva voce examination by a team of examiners including one external examiner.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Take up any challenging practical problems in Civil Engineering
CO2	Solve the problem from its identification and through literature reviews
CO3	Apply appropriate techniques, modern Engineering tools to solve the problems
CO4	Solve the problem in context with societal and environmental need
CO5	Prepare project reports, presentations and to face interviews

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO1	PSO2	PSO3		
CO1	3	3	2	2	2	2	1	3	2	2	3	2	2	2	3		
CO2	3	3	2	2	2	2	1	3	2	2	3	2	2	2	3		
CO3	3	3	2	2	2	2	1	3	2	3	3	2	2	2	3		
CO4	3	3	2	2	2	2	1	3	2	3	3	2	2	2 2 3			
CO5	3	3	2	2	2	2	1	3	2	3	3	2	2	2	3		

CE1001	REMOTE SENSING	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To ma	ke the students to understand the concepts, components and source of re	emot	te		
Sensir					
•	n knowledge about different types of remote sensing platforms and sensor	rs			
•	plain the concept of satellite image interpretation				
	derstand the applications of remote sensing in Civil Engineering				
UNIT I	REMOTE SENSING AND ELECTROMAGNETIC RADIATION				9
	omponents of RS – History of Remote Sensing – Merits and demerits				
	een conventional and remote sensing methods - Electromagnetic Spe			-	:01
•	nciples - Wave theory, Planck's law, Wien's Displacement Law,		an's		•
Boltzmann lav	v, Kirchoff's law – Radiation sources: active & passive - Radiation Quantiti	ies			
UNIT II	EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL				9
Standard atm	ospheric profile – main atmospheric regions and its characteristics – intera	actic	n of		
radiation with	atmosphere - Scattering, absorption and refraction - Atmospheric wir	ndov	vs -		
Energy baland	ce equation – Specular and diffuse reflectors – Spectral reflectance & emi	ttan	ce –	C	02
Spectroradion	neter - Spectral Signature concepts - Typical spectral reflectance cu	rves	s for		
vegetation, so	il and water – solid surface scattering in microwave region.				
UNIT III	ORBITS AND PLATFORMS				9
Motions of pla	nets and satellites - Newton's law of gravitation - Gravitational field and p	oote	ntial		
- Escape vel	ocity - Kepler's law of planetary motion - Orbit elements and types –	- Or	bital		
perturbations	and maneuvers - Types of remote sensing platforms - Ground based, A	Airb	orne	C	O3
platforms and	Space borne platforms - Classification of satellites - Sun synchrono	ous	and		
Geosynchron	ous satellites – Legrange Orbit.				
UNIT IV	SENSING TECHNIQUES				9
Classification	of remote sensors - Resolution concept : spatial, spectral, radiome	tric	and		
temporal reso	lutions - Scanners - Along and across track scanners – Optical-infrared se	ensc	ors –		
Thermal sens	ors - microwave sensors - Calibration of sensors - High Resolution Se	enso	ors -		04
LIDAR , UAV	 Orbital and sensor characteristics of live Indian earth observation satellite 	es			
UNIT V	DATA INTERPRETATION AND CIVIL ENGINEERING APPLICATIONS	S			9
Photographic	and digital products - Types, levels and open source satellite data products	duct	ts		
selection and	procurement of data- Visual interpretation: basic elements and interpretation	reta	ation		
keys – Digital	interpretation - Concepts of Image rectification, Image enhancement and	Ima	age	С	:05
classification	- Civil Engineering applications: highway and railway alignments, site s	ele	ction		
for dams, tow	n and regional planning				
	TOTAL	: 4	5 PF	RIO	DS
L	IOIAE	. 70			

- Thomas M.Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Sensing and Image interpretation, John Wiley and Sons, Inc, New York, 2009.
- George Joseph and C Jeganathan, Fundamentals of Remote Sensing, Universities Press (India) Private limited, Hyderabad, 2018

REFERENCE BOOKS

- 3. Janza, F.Z., Blue H.M. and Johnson, J.E. Manual of Remote Sensing. Vol.I, American Society of Photogrametry, Virginia, USA, 2002.
- 4. Verbyla, David, Satellite Remote Sensing of Natural Resources. CRC Press, 1995
- 5. Paul Curran P.J. Principles of Remote Sensing. Longman, RLBS, 2003.
- 6. Introduction to Physics and Techniques of Remote Sensing, Charles Elachi and Jacob Van Zyl, 2006 Edition II, Wiley Publication.
- 7. Basudeb Bhatta, Remote Sensing and GIS, Oxford University Press, 2011

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the concepts and laws related to remote sensing
CO2	Understand the interaction of electromagnetic radiation with atmosphere and earth material
CO3	Acquire knowledge about satellite orbits and different types of satellites
CO4	Understand the different types of remote sensors
COF	Gain knowledge about the concepts of interpretation of satellite imagery and
CO5	civil engineering applications

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2	PSO3			
CO1	3	-	-	-	-	-	-	-	-	1	-	-	1	2	2			
CO2	-	-	-	-	-	-	-	-	-	3	-	-	2	3	2			
CO3	2	-	-	-	-	3	3	-	-	-	-	-	2	1	2			
CO4	2	-	2	-	-	-	-	-	-	-	1	2	2	2	1			
CO5	2	3	2	3	3	2	3	3	1	-	-	-	3	3 2 2				

CE1002	GEOGRAPHIC INFORMATION SYSTEM	Г	Т	Р	С
		3	0	0	3
OBJECTIVES					
To intro	duce the fundamentals and components of Geographic Information Syst	em			
❖ To prov	ride details of spatial data structures and input, management and output	proc	esse	es.	
UNIT I	FUNDAMENTALS OF GIS				9
Introduction to	GIS - Basic spatial concepts - Coordinate Systems - GIS and Info	orma	ation		
Systems - De	finitions – History of GIS - Components of a GIS – Hardware, Softwar	e, D	ata,		:01
People, Metho	ds - Proprietary and open source Software - Types of data - Spatial,	Attri	bute	"	O I
data- types of	attributes – scales/ levels of measurements.				
UNIT II	SPATIAL DATA MODELS				9
Database Stru	ctures – Relational, Object Oriented – Entities – ER diagram - data n	node	els -		
conceptual, lo	gical and physical models - spatial data models – Raster Data Struc	cture	es –		:02
Raster Data C	ompression - Vector Data Structures - Raster vs Vector Models- TIN ar	nd G	RID		<i>,</i> U2
data models.					
UNIT III	DATA INPUT AND TOPOLOGY				9
Scanner - Ras	ter Data Input – Raster Data File Formats – Georeferencing – Vector Da	ata I	nput		
–Digitiser- – [Datum Projection and reprojection -Coordinate Transformation – Top	oloc	gy -		:03
Adjacency, co	nnectivity and containment – Topological Consistency – Non topolog	gical	file	"	03
formats - Attrib	ute Data linking – Linking External Databases – GPS Data Integration				
UNIT IV	DATA QUALITY AND STANDARDS				9
Data quality - I	Basic aspects - completeness, logical consistency, positional accuracy, t	emp	oral		
accuracy, then	natic accuracy and lineage – Metadata – GIS Standards –Interoperability	y - C	OGC	C	04
- Spatial Data	nfrastructure				
UNIT V	DATA MANAGEMENT AND OUTPUT				9
Import/Export	- Data Management functions- Raster to Vector and Vector to	Ra	ster		
Conversion - I	Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterp	rise	Vs.	C	O 5
Desktop GIS d	istributed GIS.				
	TOTAL	. : 4	5 PE	RIO	DS

- Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCE BOOKS

 Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

COURSE OUTCOMES

CO1	Have basic idea about the fundamentals of GIS.
CO2	Understand the types of data models.
CO3	Get knowledge about data input and topology.

CO4	Gain k	knowle	dge o	on dat	ta qua	ality a	ınd st	anda	rds.						
CO5	Under	Understand data management functions and data output													
				N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO	S			
COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	1	-	2	1	-	-	-	-	-	-	1	2	2
CO1	2	- 1	1 2	2	3	1	-	-	-	-	-	-	2		2
		1 1	2 2	2 2		1 1 1	-	-	-	-	-	-	2 2	2	_

CO5

2

CE1003	GEOINFORMATICS APPLICATIONS FOR CIVIL ENGINEERS	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
❖ To solv	e the Civil Engineering problems with the help of Geoinformatics techniq	ue.			
UNIT I	MAP PRODUCTION CONCEPTS				9
Maps - uses —	- Types of Maps – Map Scales – Map projections — Map co-ordinate sy	/ster	ns –		
Elements of a	map - Map Layout principles – Map Design fundamentals – symb	ols	and		
conventional s	igns - colours and patterns in symbolization – map lettering - map prod	lucti	on –	· C	01
map printing-	colours and visualization – map reproduction - Map generalization – go	eom	etric	:	
transformations	s – bilinear and affine transformations.				
UNIT II	GIS AND SPATIAL DATA				9
Data – Informa	ation – Primary and Secondary data sources – GIS - Components of	a G	IS -		
Hardware, Soft	tware, Data, People, Methods - Types of data – Spatial, Attribute data -	- sca	ales/	ر ا	02
levels of mea	surements - spatial data models - Raster vs Vector Models - Rast	ter [Data	'	,02
Structures - TII	N and GRID data models.				
UNIT III	RASTER AND VECTOR DATA ANALYSIS				9
Raster Data a	nalysis: Query Analysis – Local, Focal and Zonal Operations – Cost-I	Dista	ance		
Analysis - Leas	st Cost Path – Vector data analysis – attribute data analysis - query, cal	culat	ions		
 Integrated da 	ata analysis - Reclassification, Aggregation, Overlay analysis: Point-in-	poly	gon,	C	CO3
Line1in-Polygo	n, Polygon-on-Polygon: Clip, Erase, Identity, Union, Intersection - F	Proxi	mity		
Analysis: Buffe	ring				
UNIT IV	NETWORK ANALYSIS				9
Network - Intr	oduction - Network Data Model - Elements of Network - Building a	Net	work		
database - Ge	ocoding – Address Matching - Shortest Path in a Network – Time and I	Dista	ance	ر ا	04
Based shortes	t path analysis - Driving Directions - Closest Facility Analysis - Cato	chme	ent /		,04
Service Area A	nalysis-Location-Allocation Analysis.				
UNIT V	MODELLING AND APPLICATIONS				9
Land Informati	on studies - Building information system - Digital Infrastructure manag	geme	ent -		
Watershed mo	odelling for sustainable development - modelling of reservoir siltatio	n –	soil	ر ا	05
degradation as	ssessment - Highway alignment studies - Intelligent transportation sy	sten	ns –	`	,55
Solid Waste ma	anagement - Air quality monitoring - Disaster management.				
	TOTAL	. : 4	5 PE	RIO	DS

- C.P. Lo Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Second edition, PHI Learning Private Limited, Delhi, 2014.
- 2. Jonathan E. Campbell, Michael Shin, Essential of Geographic Information System, Saylor Foundation, 2011.

- 1. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction to Geographical Information Systems, Pearson Education, 2nd Edition, 2007.
- 2. Michael N. DeMers, Fundamentals of geographic information systems, Wiley, 2009
- 3. John Peter Wilson, The handbook of geographic information science, Blackwell Pub.,2008
- 4. Harvey J.Miller, Shih-Lung Shaw, Geographic Information System for Transportation-

- Principle and Applications, Oxford University Press,2001.
- 5. Kang-Tsung Chang, "Introduction to Geographic Information Systems", McGraw Hill Publishing, 2nd Edition, 2011.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- 1	1
CO1	Understand the concepts of map making process.
CO2	Gain knowledge on spatial data and Geographic Information System
CO3	Impart the required skills for analyzing the spatial data useful modelling the real world problems
CO4	Impart the required skills for analyzing the spatial data useful modelling transportation networks
001	and resource transport.
CO5	Gain knowledge on the applicability of Geoinfomatics technology on diverse Civil Engineering
003	Problems

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2

CE1004	ADVANCED SURVEYING TECHNIQUES	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To under	erstand the working of Total Station and GPS and solve the surveying pro	oble	ms.		
UNIT I	FUNDAMENTALS OF TOTAL STATION AND ELECTROMAGNETIC	WA	VES		9
Methods of Me	easuring Distance, Basic Principles of Total Station, Historical Develo	opm	nent,		
Classifications,	applications and comparison with conventional surveying. Classi	fica	tion-		:01
applications of	Electromagnetic waves, Propagation properties, wave propagation at lo	wer	and	'	, O I
higher frequence	cies				
UNIT II	DISTANCE AND ATMOSPHERIC CORRECTION				9
Refractive inde	x (RI) - factors affecting RI-Computation of group for light and near	infr	ared		
waves at stan	dard and ambient conditions-Computation of RI for microwaves at	amb	oient		
condition - Re	eference refractive index- Real time application of first velocity co	rrec	tion.	C	02
Measurement of	of atmospheric parameters- Mean refractive index- Second velocity corr	recti	ion -		
Total atmosphe	eric correction- Use of temperature and pressure transducers.				
UNIT III	ELECTRO OPTICAL AND MICRO WAVE SYSTEM				9
Electro-optical	system: Measuring principle, Working principle, Sources of Error, Infra	red	and		<u>.</u>
Laser Total St	ation instruments. Microwave system: Measuring principle, working p	rinc	iple,		
Sources of Err	or, Microwave Total Station instruments. Comparison between Electro	o-op	tical	C	O 3
and Microwave	system. Care and maintenance of Total Station instruments - Travers	sing	and		
Trilateration-CO	OGO functions, offsets and stake out-land survey applications.				
UNIT IV	GPS SATELLITE SYSTEM				9
Basic concepts	of GPS - Historical perspective and development - applications - Ge	oid	and		<u>.</u>
Ellipsoid- satel	lite orbital motion - Keplerian motion - Kepler's Law - Perturbing f	orce	es –		
Geodetic satelli	ite - Doppler effect - Positioning concept –GNSS, IRNSS and GAGAN - I	Diffe	erent		
segments - spa	ace, control and user segments - satellite configuration – GPS signal stru	uctu	ıre –	. '	04
Orbit determina	ation and representation - Anti Spoofing and Selective Availability -	Tas	k of	:	
control segmen	t - GPS receivers.				
UNIT V	GPS DATA PROCESSING				9
GPS observab	les - code and carrier phase observation - linear combination and	der	ived		1
observables -	concept of parameter estimation - downloading the data RINEX Fo	orm	at –		
Differential data	a processing – software modules -solutions of cycle slips, ambiguities, C	onc	epts		· 0 E
of rapid, static	methods with GPS - semi Kinematic and pure Kinematic methods -	-sate	ellite	'	:05
geometry & ac	ccuracy measures - applications- long baseline processing- use of	diffe	erent		
softwares.					
	TOTAL	: 4	5 PE	RIO	DS

- 1. Rueger, J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 4th Edition, 1996.
- 2. Satheesh Gopi, rasathishkumar, N.madhu, Advanced Surveying, Total Station GPS and Remote Sensing Pearson education, 2nd Edition, 2017. isbn: 978-81317 00679

- 1. R.Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.
- 2. Laurila, S.H. Electronic Surveying in Practice, John Wiley and Sons Inc, 1983.
- 3. Guocheng Xu, GPS Theory, Algorithms and Applications, Springer Verlag, Berlin, 3rd

Edition,2016.

- 4. Alfred Leick, GPS satellite surveying, John Wiley & Sons Inc., 4th Edition, 2015.
- 5. Seeber G, Satellite Geodesy, Walter De Gruyter, Berlin,2nd Edition,2003.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Learn the fundamentals of Total station.
CO2	Provides knowledge about electromagnetic waves and its usage in Total station and GPS.
CO3	Understand the measuring and working principle of electro optical and Microwave Total station
003	and GPS
~~ 4	

CO4 Learn the basic concepts of GPS

CO5 | Gains knowledge about Total station and GPS data downloading and processing

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	1	2	2	2	1	3	2	1	2	1	2	1
CO2	1	2	2	2	1	2	2	1	2	2	2	1	2	3	2
СОЗ	1	2	1	1	2	1	2	1	2	1	1	2	2	1	2
CO4	1	1	1	1	3	1	1	1	1	1	1	3	2	2	2
CO5	1	3	1	1	3	1	2	1	3	1	1	3	3	2	3

CE1005	AIR POLLUTION AND CONTROL ENGINEERING L T	Р	С
	3 0	0	3
OBJECTIVES			
To imp	art knowledge on the principle and design of control of Indoor/ particulate/ gased	ous	air
pollutar	nt and its emerging trends.		
UNIT I	AIR QUALITY		9
Structure and	composition of Atmosphere - Definition, Scope and Scales of Air Pollution -		
Sources and	classification of air pollutants and their effect on human health, vegetation,		:01
animals, prope	erty, aesthetic value and visibility- Ambient Air Quality and Emission standards -		,01
Ambient and s	tack sampling and Analysis of Particulate and Gaseous Pollutants.		
UNIT II	ATMOSPHERIC DISPERSION OF AIR POLLUTANT	1	9
Effects of met	eorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind		
profiles and sta	ack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume	С	:02
rise			
UNIT III	CONTROL OF PARTICULATE POLLUTANTS		9
Gas Particle I	nteraction – Working principle, Design and performance equations of Gravity		
Separators, 0	Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic	С	О3
Precipitators –	Operational Considerations- Factors affecting Selection of Control Equipment.		
UNIT IV	CONTROL OF GASEOUS POLLUTANTS		9
Working princi	ple, Design and performance equations of absorption, Adsorption, condensation,		
Incineration, E	Bio scrubbers, Bio filters – Process control and Monitoring – Operational	С	Ο4
Considerations	s- Factors affecting Selection of Control Equipment –CO2 capturing.		
UNIT V	INDOOR AIR QUALITY		9
Sources types	and control of indoor air pollutants, sick building syndrome types -Sources and		
Effects of Nois	e Pollution – Measurement – Standards–Control and Preventive measures.	C	O5
	TOTAL : 45 PER	חוס	DS

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 2. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 1995.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002

REFERENCE BOOKS

- 1. David H.F. Liu, Bela G. Liptak "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C.Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc.,2000

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand the chemistry of atmosphere, characterize the air pollutants ,know

	the eff	ects of	air po	ollutio	n, ide	ntify tl	he crit	teria a	air pol	lutants	and k	now al	oout				
	NAAQ	S															
	Apply	the kno	owled	ge of	mathe	ematio	cs ,sci	ience	and e	engine	ering fu	undam	entals to				
CO2	unders	stand tl	he cor	ncept	of me	teoro	logy,	air po	llution	dispe	rsion a	and Ga	ussian				
	plume	olume dispersion model															
CO3	Select	Select suitable method and design the particulate pollutant control equipment															
CO4	Select emissi		priate	meth	od fo	r cont	trol of	gase	ous p	ollutar	nt by d	ue cor	nsideratio	on of sou	irces of		
CO5							•							ell as to ise pollut	•		
				N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO	S					
				DDO	CDA	мог	J TCO	MES	(PO c)				PROGI	RAM SPI	ECIFIC		
COs				IKO	GKA	WI OC	TCO.	MILO	(1 Os)				OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	1	-	-	-	-	-	-	-	-	-	-	1	2	3		
CO2	2	1	-	-	-	-	-	-	-	-	-	-	1	2	3		
CO3	3	2	-	-	-	1	-	-	-	-	-	-	2	3	3		
CO4	3	2	-	-	-	1	-	-	-	-	-	-	2	3	3		
CO5	3	2	-	-	-	1	-	-	-	-	-	-	2	3	3		

CE1006	ENVIRONMENTAL AND SOCIAL L T	Р	С
	IMPACT ASSESSMENT		
	3 0	0	3
OBJECTIVES			
To impa	art the knowledge and skills to identify, assess and mitigate the environment	al a	anc
•	npacts of developmental projects		
UNIT I	INTRODUCTION		Ç
Impacts of De	evelopment on Environment - Rio Principles of Sustainable Development-		
Environmental	Impact Assessment (EIA) - Objectives - Historical development - EIA Types -	С	:01
EIA in project o	cycle –EIA Notification and Legal Framework.		
UNIT II	ENVIRONMENTAL ASSESSMENT		Ĝ
Screening and	Scoping in EIA - Drafting of Terms of Reference, Baseline monitoring,		
Prediction and	Assessment of Impact on land, water, air, noise, flora and fauna - Matrices -	С	02
Networks – Ch	ecklist Methods - Mathematical models for Impact prediction.		
UNIT III	ENVIRONMENTAL MANAGEMENT PLAN		ç
Plan for mitiga	tion of adverse impact on water, air and land, water, energy, flora and fauna -		
Environmental	Monitoring Plan - EIA Report Preparation - Public Hearing-Environmental	С	0
Clearance			
UNIT IV	SOCIO ECONOMIC ASSESSMENT		Ş
Baseline moni	toring of Socio economic environment – Identification of Project Affected		
Personal – R	ehabilitation and Resettlement Plan- Economic valuation of Environmental	С	04
impacts – Cost	benefit Analysis		
UNIT V	CASE STUDIES		9
	ies pertaining to Infrastructure Projects - Roads and Bridges - Mass Rapid		
EIA case stud	nee pertaining to inindetractare riejecte. Itoade and Bridgee. Made rapid		\sim
	ems - Airports - Dams and Irrigation projects - Power plants.	С	05

- 1. Canter, R.L, "Environmental impact Assessment", 2nd Edition, McGraw Hill Inc, New Delhi, 1995.
- 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank,1997.
- 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009.

REFERENCE BOOKS

- 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003.
- 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998.
- 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Carry out scoping and screening of developmental projects for environmental and social

	assess	sments	}																
CO2	Explai	n differ	ent m	ethoc	lologi	es for	envir	onme	ntal in	npact p	oredict	ion and	dassess	ment					
CO3	Plan e	nvironi	menta	ıl impa	act as	sessr	nents	and e	enviro	nment	al man	ageme	ent plans						
CO4	Evalua	Evaluate environmental impact assessment reports																	
CO5	Mitigat	Mitigate the environmental and social impacts of developmental projects																	
	I			N	IAPP	ING (OF CO)s WI	TH P	Os AN	D PSO	S							
COs		PROGRAM OUTCOMES (POs)													SPECIFIC ES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
CO1	3	2	-	-	-	2	2	1	3	2	1	2	1	2	2				
CO2	3	2	-	-	-	2	2	1	2	2	2	1	2	3	2				
CO3	3	2	-	-	-	1	2	1	2	1	1	2	2	1	2				
CO4	3	2	-	-	-	1	1	1	1	1	1	3	2 2 1						
CO5	3	2	-	-	-	1	2	1	3	1	1	3	3	2	2				

CE1007	INDUSTRIAL WASTEWATER TREATMENT	L	T	Р	С
		3	0	0	3
OBJECTIVES					
·	art knowledge on composition treatment and effective disposal of industri	al e	fflue	nts	
UNIT I	SOURCES OF POLLUTANTS				9
Sources of Po	llution - Physical, Chemical, Organic & Biological properties of Industrial V	Vas	tes		
- Difference be	etween industrial & municipal waste waters - Effects of industrial effluents	on		C	01
sewers and Na	atural water Bodies.				
UNIT II	PRIMARY TREATMENT OF POLLUTANTS			•	9
Pre & Primary	Treatment - Equalization, Proportioning, Neutralization, Oil separation by				
Floating-Waste	e Reduction-Volume Reduction-Strength Reduction.			C	02
UNIT III	WASTE TREATMENT METHODS				9
Waste Treatm	ent Methods - Nitrification and De-nitrification-Phosphorous removal -Hea	ıvy			
metal removal	- Membrane Separation Process - Air Stripping and Absorption Processe	s -		C	:03
Special Treatn	nent Methods - Disposal of Treated Waste Water.				
UNIT IV	CHARACTERISTICS AND COMPOSITION OF INDUSTRIAL WASTE	NA	ΓER		9
Characteristics	s and Composition of waste water and Manufacturing Processes of Indust	ries	like		
Sugar, Chara	cteristics and Composition of Industries like Food processing Industries	dust	ries,	C	04
Tanneries - Jo	int Treatment of Raw Industries waste water and Domestic Sewage.				
UNIT V	OIL REFINERS, PHARMACEUTICAL PLANTS				9
Characteristics	and Composition of Industries like Textiles, and other Mineral Pro	ces	sing		
Industries - S	teel, and Petroleum Refineries - Common Effluent Treatment Plants(C	ET	P) –	C	O5
Location, Desi	gn, Operation and Maintenance Problems – Economical aspects.				
	TOTAL	: 4	5 PE	RIO	DS

- 1. Handbook of Industrial Waste Disposal by Richard A. Conway Richard Ross-Van Nostrand publisher (1980)
- 2. Eckenfelder, W.W., "Industrial Water Pollution Control", McGraw-Hill
- 3. Metcalf & Eddy, "Wastewater engineering Treatment disposal reuse", Tata McGraw Hill

REFERENCE BOOKS

- 1. Industrial Waste Treatment: Contemporary Practice and Vision for the Future by Nelson Leonard Nemerow, Nemerow Butterworth Weinemann publisher (2006)
- 2. Wastewater Treatment by M. N. Rao and A. K. Datta-Oxford I. B. H publishers
- 3. C.G. Gurnham Principles of Industrial Waste Engineering.

COURSE OUTCOMES

CO1	Distinguish between the quality of domestic and industrial water requirements and
COI	Wastewater quantity generation
CO2	Understand the industrial process, water utilization and waste water generation
CO3	Impart knowledge on selection of treatment methods for industrial wastewater
CO4	Acquire the knowledge on operational problems of common effluent treatment plants.

CO5

Gain knowledge on different techniques and approaches for minimizing the generation and application of Physio chemical and biological treatment methods for recovery, reuse and disposal of industrial wastewater.

MAPPING OF COs WITH POS AND PSOS

COs				PRO	GRA	M OU	JTCO	MES	(POs)				PROGRAM SPECIFI OUTCOMES (PSOs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3						
CO1	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2						
CO2	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2						
CO3	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2						
CO4	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2						
CO5	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2						

CE1008 MUNICIPAL SOLID WASTE MANAGEMENT L	L	Т	Р	С
3	3	0	0	3
OBJECTIVES				
To make the students conversant with the types, sources, generation, storage	ıge,	col	ecti	on,
transport, processing and disposal of municipal solid waste				
UNIT I SOURCES AND CHARACTERISTICS				9
Sources and types of municipal solid wastes-waste generation rates-factors af	ffec	ting		
generation, characteristics-methods of sampling and characterization; Effects of im	npro	per		
disposal of solid wastes-Public health and environmental effects. Elements of solid	Wa	aste	С	01
management -Social and Financial aspects - I solid waste (M&H) rules - integrated solid	idwa	aste		
management-Public awareness; Role of NGO" s- Public Private participation.				
UNIT II ON-SITE STORAGE AND PROCESSING				9
On-site storage methods – Effect of storage, materials used for containers – segregation	of			
solid wastes - Public health and environmental aspects of open storage - waste segrega	atio	n	6	02
and storage – case studies under Indian conditions – source reduction of waste – Reduction	ction	١,	`	O2
Reuse and Recycling of plastic waste –Construction and Demolishing waste.				
UNIT III COLLECTION AND TRANSFER				9
Methods of Residential and commercial waste collection - Collection vehicles - Manpo	owo	er –		
Collection routes – Analysis of collection systems; Transfer stations – Selection of location	on,		С	O3
operation & maintenance; options under Indian conditions – Field problems- solving				
UNIT IV OFF-SITE PROCESSING				9
Objectives of waste processing – Physical Processing techniques and Equipment; Resou	urce	9		
recovery from solid waste composting and biomethanation; Thermal processing options -	— ca	ase	С	04
studies under Indian conditions.				
UNIT V DISPOSAL				9
Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sa	ani	tary		
landfills - Landfill liners - Management of leachate and landfill gas- Landfill biorea	acto	or –	C	O 5
Dumpsite capping –Biomining.				
TOTAL :	: 45	PE	RIO	DS

- 1. Cherry P M, Solid and Hazardous Waste Management, CBS publishers and distributors Pvt Ltd, 2018
- 2. Rao M.N, Razia Sultana, Sri Harsha Kota, solid and hazardous waste management Science and Engineering, Butterworth-Heinemann, 2016

- 1. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid Waste Management, Mc-Graw Hill India, First edition, 2015.
- 2. CPHEEO, "Manual on Municipal Solid waste management, Vol I, II and III, Central Public Health and Environmental Engineering Organisation, Government of India, New Delhi, 2016.
- 3. William A. Worrell, P. Aarne Vesilind, Christian Ludwig, Solid Waste Engineering A Global Perspective, 3rd Edition, Cengage Learning, 2017.
- 4. Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and "Environmental Resources Management, Hazardous waste Management", Mc-Graw Hill International edition, New York, 2010.
- 5. John Pitchtel, Waste Management Practices, CRC Press, Taylor and Francis Group, 2014.

6.	Gar	y C. Yo	oung,	Muni	cipal S	Solid \	Waste	to E	nergy	•					
COUR	RSE OU'	ГСОМ	ES												
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to							
CO1	Gain k	nowled	dge o	n the I	oasics	s of pr	opert	ies of	matte	er and	its app	ication	ıs,		
CO2	Acquir optics.		vledge	on the	ne coi	ncept	s of w	aves	and c	ptical	device	s and	their app	lications	in fibre
СОЗ	Have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers.														
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and														
CO5	Under	stand t	he ba	sics o	f crys	tals, t	heir s	tructu	res a	nd diffe	erent c	rystal (growth te	chnique	S.
	1			N	1APP	ING (OF CO)s WI	TH P	Os AN	D PSO	S			
COs				PRO	GRA	м оц	TCO	MES	(POs)					RAM SPI COMES (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2

OBJECTIVES ↑ To introduce the student to the concept of hydrological aspects of water availability and requirements and should be able to quantify, control and regulate the water resources. UNIT I PRECIPITATION AND ABSTRACTIONS Hydrological cycle- Meteorological measurements - Requirements, types and forms of precipitation - Rain gauges -Spatial analysis of rainfall data using Thiessen and Isohyetal methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange's table and SCS methods - Stage discharge relationships- flow measurements- Hydrograph - Unit Hydrograph - IUH UNIT III FLOOD AND DROUGHT Classification of reservoirs, General principles of design, site selection, spillways, elevation - area - capacity - storage estimation, sedimentation - life of reservoirs - rule curve UNIT IV RESERVOIRS Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration - Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT Origin- Classification and types - properties of aquifers- governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas	CE1009	HYDROLOGY AND WATER RESOURCES ENGINEERING	L	Т	Р	С
* To introduce the student to the concept of hydrological aspects of water availability and requirements and should be able to quantify, control and regulate the water resources. VINIT PRECIPITATION AND ABSTRACTIONS 9			3	0	0	3
Trequirements and should be able to quantify, control and regulate the water resources. UNIT I PRECIPITATION AND ABSTRACTIONS 9 Hydrological cycle- Meteorological measurements – Requirements, types and forms of precipitation - Rain gauges -Spatial analysis of rainfall data using Thiessen and Isohyetal methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical – Strange's table and SCS methods – Stage discharge relationships- flow measurements- Hydrograph – Unit Hydrograph – IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	OBJECTIVES					
UNIT I PRECIPITATION AND ABSTRACTIONS Hydrological cycle- Meteorological measurements – Requirements, types and forms of precipitation - Rain gauges -Spatial analysis of rainfall data using Thiessen and Isohyetal methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical – Strange's table and SCS methods – Stage discharge relationships- flow measurements- Hydrograph – Unit Hydrograph – IUH UNIT III FLOOD AND DROUGHT Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	To intro	oduce the student to the concept of hydrological aspects of water	ava	ilabil	ity	and
Hydrological cycle- Meteorological measurements – Requirements, types and forms of precipitation - Rain gauges -Spatial analysis of rainfall data using Thiessen and Isohyetal methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical – Strange's table and SCS methods – Stage discharge relationships- flow measurements- Hydrograph – Unit Hydrograph – IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	require	ments and should be able to quantify, control and regulate the water resc	ourc	es.		
precipitation - Rain gauges -Spatial analysis of rainfall data using Thiessen and Isohyetal methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange's table and SCS methods - Stage discharge relationships- flow measurements- Hydrograph - Unit Hydrograph - IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation - area - capacity - storage estimation, sedimentation - life of reservoirs - rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration - Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas	UNIT I	PRECIPITATION AND ABSTRACTIONS				9
methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange's table and SCS methods - Stage discharge relationships- flow measurements- Hydrograph - Unit Hydrograph - IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation - area - capacity - storage estimation, sedimentation - life of reservoirs - rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration - Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas	Hydrological o	cycle- Meteorological measurements – Requirements, types and f	orm	s of	:	
evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices. UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange's table and SCS methods - Stage discharge relationships- flow measurements- Hydrograph - Unit Hydrograph - IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation - area - capacity - storage estimation, sedimentation - life of reservoirs - rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration - Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas	precipitation -	Rain gauges -Spatial analysis of rainfall data using Thiessen and Is	soh	yetal		
indices. UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange's table and SCS methods - Stage discharge relationships- flow measurements- Hydrograph - Unit Hydrograph - IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation - area - capacity - storage estimation, sedimentation - life of reservoirs - rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration - Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas	methods-Interd	eption - Evaporation. Horton's equation, pan evaporation measureme	ents	and	0	; 01
UNIT II RUNOFF 9 Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange's table and SCS methods - Stage discharge relationships- flow measurements- Hydrograph - Unit Hydrograph - IUH CO2 UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation - area - capacity - storage estimation, sedimentation - life of reservoirs - rule curve CO3 UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration - Wastewater reuse - Sustainable livelihood - Food security CO4 UNIT V GROUNDWATER AND MANAGEMENT 9 Origin - Classification and types - properties of aquifers - governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas CO5	evaporation su	ippression - Infiltration-Horton's equation - double ring infiltrometer, in	filtra	ation	ı	
Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical — Strange's table and SCS methods — Stage discharge relationships- flow measurements- Hydrograph — Unit Hydrograph — IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation — area - capacity - storage estimation, sedimentation - life of reservoirs — rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration — Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations — steady and unsteady flow - artificial recharge — Rain Water Harvesting in rural and urban areas	indices.					
estimation using empirical – Strange's table and SCS methods – Stage discharge relationships- flow measurements- Hydrograph – Unit Hydrograph – IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainabilityWatershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	UNIT II	RUNOFF			•	9
relationships- flow measurements- Hydrograph – Unit Hydrograph – IUH UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainabilityWatershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	Watershed, ca	tchment and basin - Catchment characteristics - factors affecting runoff -	- Ru	n off	:	
UNIT III FLOOD AND DROUGHT 9 Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainabilityWatershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	estimation us	ing empirical – Strange's table and SCS methods – Stage di	isch	arge	. 0	; 02
Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9 Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	relationships- f	low measurements- Hydrograph – Unit Hydrograph – IUH				
area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS 9	UNIT III	FLOOD AND DROUGHT			•	9
area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve UNIT IV RESERVOIRS Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas CO5	Classification of	of reservoirs, General principles of design, site selection, spillways, ele	vati	on –		.03
Rural Development - Ecological sustainabilityWatershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas CO5	area - capacity	- storage estimation, sedimentation - life of reservoirs - rule curve			'	,03
Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas CO5	UNIT IV	RESERVOIRS				9
UNIT V GROUNDWATER AND MANAGEMENT 9 Origin- Classification and types - properties of aquifers- governing equations - steady and unsteady flow - artificial recharge - Rain Water Harvesting in rural and urban areas	Rural Develop	ment - Ecological sustainabilityWatershed development and conse	rvati	on -		````
Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	Ecosystem reg	eneration – Wastewater reuse - Sustainable livelihood - Food security			'	,04
unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	UNIT V	GROUNDWATER AND MANAGEMENT			',	9
unsteady flow - artificial recharge – Rain Water Harvesting in rural and urban areas	Origin- Classi	fication and types - properties of aquifers- governing equations - ste	ady	and		`05
	unsteady flow	- artificial recharge – Rain Water Harvesting in rural and urban areas			'	,05
TOTAL : 45 PERIODS		TOTAL	. : 4	5 PE	RIC	DS

- 1. Subramanya. K. "Engineering Hydrology"- Tata McGraw Hill, 2010.
- 2. Jayarami Reddy. P. "Hydrology", Tata McGraw Hill, 2008.
- 3. Linsley, R.K. and Franzini, J.B. "Water Resources Engineering", McGraw Hill International Book Company, 1995.

REFERENCE BOOKS

- 1. David Keith Todd. "Groundwater Hydrology", John Wiley & Sons, Inc. 2007.
- 2. Ven Te Chow, Maidment, D.R. and Mays, L.W. "Applied Hydrology", McGraw Hill International Book Company, 1998.
- 3. Raghunath. H.M., "Hydrology", Wiley Eastern Ltd., 1998.

COURSE OUTCOMES

CO1	Define the key drivers on water resources, hydrological processes and their integrated
CO1	behaviour in catchments
CO2	Apply the knowledge of hydrological models to surface water problems including basin
CO2	characteristics, runoff and Hydrograph
CO3	Explain the concept of hydrological extremes such as Flood and Drought and management

	strateg	gies																
CO4	Descri	be the	impo	rtance	of sp	atial	analys	sis of	rainfa	ll and	design	water	storage	reservoii	rs			
CO5	Apply	the co	ncepts	s of gr	ound	water	for wa	ater re	esour	ces ma	anagen	nent						
				N	IAPP	ING (OF CO)s WI	TH P	Os AN	D PSO	S						
COs		PROGRAM OUTCOMES (POs)													OGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	2	2	2	2	2	1	2	2	-	-	-	2	2	2	2			
CO2	3	2	3	3	3	2	-	3	-	2	2	2	2	3	2			
							1			_	_		1 2 3					
CO3	3	3	3	2	3	2	2	2	-	2	3	2	1	2	3			

CO5

CE1010	INTEGRATED WATER RESOURCES MANAGEMENT	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
❖ To intro	oduce the students to the interdisciplinary analysis of water and conce	ptua	al de	sigr	ı of
interver	ntion strategies.				
To deve	elop a knowledge-base on capacity building on IWRM.				
UNIT I	IWRM FRAMEWORK				9
Definition, class	ssification, and characteristics of systems - Scope and steps in	syst	ems		
engineering -	Need for systems approach to water resources and irrigation. Defi	nitic	n –		:01
Objectives – Pr	rinciples - Evolution of IWRM - IWRM relevance in water resources mana	ager	nent	`	,01
 Paradigm shi 	ft : Processes and prospective outcomes				
UNIT II	CONTEXTUALIZING IWRM				9
IWRM in Glo	bal, Regional and Local water partnership – Institutional transforn	natio	n -	(:02
Bureaucratic re	eforms - Inclusive development			`	.02
UNIT III	EMERGING ISSUES IN WATER MANAGEMENT				9
Bellman's optin	mality criteria, problem formulation and solutions - Application to des	ign	and		
operation of re	servoirs, Single and multipurpose reservoir development plans - Case	stud	dies.	_	:03
Emerging Issue	es Drinking water management in the context of climate change - IW	'RΜ	and		03
irrigation - Floo	d – Drought– Linkages between water, health and poverty				
UNIT IV	IWRM AND WATER RESOURCES DEVELOPMENT IN INDIA				9
Rural Develop	ment - Ecological sustainabilityWatershed development and conser	vati	on -		:04
Ecosystem reg	eneration – Wastewater reuse - Sustainable livelihood - Food security				,04
UNIT V	ASPECTS OF INTEGRATED DEVELOPMENT				9
Capacity buildi	ng - Conceptual framework of IWRM – Problems and policy issues - S	Solut	ions		:05
for effective into	egrated water management - Case studies				,00
	TOTAL	: 4	PE	RIO	DS

- Mollinga P. et al. "Integrated Water Resources Management", Water in South Asia Volume I, Sage Publications, 2006.
- 2. Sithamparanathan, Rangasamy, A., and Arunachalam, N., "Ecosystem Principles and Sustainable Agriculture", Scitech Publications (India) Pvt.Lt, Chennai, 1999.

REFERENCE BOOKS

- 1. Cech Thomas V., Principles of Water Resources: History, Development, Management and Policy. John Wiley and Sons Inc., New York. 2003.
- 2. Murthy, J.V.S., "Watershed Management in India", Wiley Eastern Ltd., New York, 1995.
- 3. Dalte, S.J.C., "Soil Conservation and Land Management", International Book Distribution, India, 1986.
- 4. Wagner H.M., "Principles of Operations Research with Application to Management Decisions", Prentice Hall, India, New Delhi, 1993.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand objectives, principles and evolution of integrated water resources management.

CO2	Get an	•	sure to	oward	s well	desi	gn and	d prac	ctical p	orobler	ms Hav	/e an i	dea of co	ontextual	izing			
CO3	Gain k		dge in	emei	rging	issues	s in w	ater m	nanag	ement	, flood	, droug	ht, pollu	tion and				
CO4	Under	stand t	he wa	ater re	sourc	es de	velop	ment	in Ind	lia and	waste	water	reuse.					
CO5	Gain k	Gain knowledge on integrated development of water management.																
				N	IAPP	ING (OF CO)s WI	TH P	Os AN	D PSO	S						
COs	PROGRAM OUTCOMES (POs)													RAM SPI COMES (PECIFIC S (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	1	-	1	1	-	-	2	-	3	1	-	3	2	2			
CO2	2	3	2	2	1	2	2	2	2	3	1	2	2	2	2			
СОЗ	2	2	2	-	2	2	2	3	3	3	1	2	2	2	2			
CO4	2	2	2	-	1	-	-	2	2	3	-	2	2	2	2			
CO5	2	2	2	1	1	-	-	3	2	3	1	3	3	3	3			

CE1011	GROUNDWATER ENGINEERING	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To intr	oduce the student to the principles of Groundwater governing	Equ	atior	าร ส	and
Charac	teristics of different aquifers,				
To under	erstand the techniques of development and management of groundwater	•			
UNIT I	HYDROGEOLOGICAL PARAMETERS				9
	Water bearing Properties of Rock - Type of aquifers - Aquifer prop				
	pecific yield, transmissivity and storage coefficient – Methods of Estin			6	01
	steady state flow - Darcy's Law - Groundwater Velocity Dupuit Forc	hhe	imer		
•	Steady Radial Flow into a Well			\perp	
UNIT II	WELL HYDRAULICS				9
	flow - Theis method - Jacob method - Chow's method - Law of Times				
•	iller method – Slug method - tests - Image well theory – Partial penetra			C	02
	sses – Specific Capacity and Safe yield - Collector well and Infiltration ga	llery	/		
UNIT III	GROUNDWATER QUALITY				9
	chemistry - Origin, movement and quality - Water quality standards -		_		
	strial water – Irrigation water - Ground water Pollution and legis	slatio	on -	C	CO3
	Regulatory requirements			\perp	
UNIT IV	GROUNDWATER MANAGEMENT				9
	agement Model – Database for Groundwater Management – Grou				
-	 Introduction to Mathematical model – Model Conceptualization – In 			- (04
•	dition – Calibration – Validation – Future Prediction – Sensitivity An	alys	sis –		
	Development of a model			\perp	
UNIT V	GROUNDWATER CONSERVATION				9
	ge techniques – Reclaimed wastewater recharge – Soil aquifer treatmen	•	•		
-	age and Recovery (ASR)Seawater Intrusion and Remediation – Groun			- (05
_	ment and Conjunctive use – Protection zone delineation, Contamination	n so	urce		
inventory and r	emediation schemes			╧	
	TOTAL	. : 4	5 PE	RIO	DS

- Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi,
 2010.
- 2. Todd D.K., "Ground Water Hydrology", John Wiley and Sons, New York, 2000.

REFERENCE BOOKS

- 1. Fitts R Charles, "Groundwater Science". Elsevier, Academic Press, 2002.
- 2. Ramakrishnan, S, Ground Water, K.J. Graph arts, Chennai, 1998.

COURSE OUTCOMES

CO1	Understand aquifer properties and its dynamics
CO2	Get an exposure towards well design and practical problems
CO3	Students will be able to understand the importance of artificial recharge and groundwater
003	quality concepts.

CO4	Develo	Develop a model for groundwater management.														
CO5	Gain k	Gain knowledge on conservation of groundwater.														
	MAPPING OF COs WITH POs AND PSOs															
COs					PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	-	1	1	2	3	-	-	1	2	2	2	2	
CO2	3	3	3	-	2	2	2	1	-	-	2	2	2	3	2	
CO2		2 2 2 - 3 3 2 3 2 3														

CO4

CO5

		3	0	0	3
OBJECTIVES					
To impa	art knowledge and skills relevant to application of systems concept to w	vate	r res	our	ces
plannin	g and management. Optimization technique for modeling water resource	es s	yster	ns a	and
advanc	ed optimization techniques to cover the socio-technical aspects will be ta	lugh	t.		
UNIT I	SYSTEM CONCEPTS				9
Definition, class	ssification, and characteristics of systems - Scope and steps in	syst	ems		:01
engineering - N	leed for systems approach to water resources and irrigation.				, O I
UNIT II	LINEAR PROGRAMMING				9
Introduction to	operations research - Linear programming, problem formulation, g	raph	nical		
solution, solution	on by simplex method - Sensitivity analysis, application to design and o	pera	tion	C	02
of reservoir, sir	ngle and multipurpose development plans - Case studies.				
UNIT III	DYNAMIC PROGRAMMING				9
Bellman's opti	mality criteria, problem formulation and solutions - Application to des	ign	and		:03
operation of re	servoirs, Single and multipurpose reservoir development plans - Case stu	udie	S.	"	,03
UNIT IV	SIMULATION				9
Basic principles	s and concepts - Random variant and random process - Monte Carlo tec	hnic	ues		
- Model devel	opment - Inputs and outputs - Single and multipurpose reservoir sir	mula	tion	С	04
models - Case	studies.				
UNIT V	ADVANCED OPTIMIZATION TECHNIQUES				9
Integer and page	arametric linear programming - Goal programming models with app	licat	ions		
Discrete differen	ential dynamic programming and incremental dynamic programming	- Lir	near	С	O5
decision rule m	nodels with application - Stochastic dynamic programming models.				
	TOTAL	. : 45	PE	RIO	DS

WATER RESOURCES SYSTEMS ENGINEERING

TEXT BOOKS

CE1012

- Chaturvedi. M.C., "Water Resources Systems Planning and Management". Tata McGraw Hill, New Delhi, 1997.
- 2. Mays L.W., and Tung YK, "Hydro systems Engineering and Management". McGraw Hill Inc., New York, 1992.

- 1. Gupta P.K and Man Mohan, "Problems in Operations Research (Methods and solutions)". Sultan Chand and sons, New Delhi, 1995
- 2. Hiller F.S and Liebermann G.J., "Operations Research CBS Publications and distributions". New Delhi, 1992.
- 3. Goodman Alvin S., "Principles of Water Resources Planning", Prentice Hall Inc., Englewood Cliffs, New Jersey, 1995.
- 4. Course material, "Micro Computer Application to Systems Analysis in Irrigation Water Management", CWR, Anna University, 1992.
- 5. Wagner H.M., "Principles of Operations Research with Application to Management Decisions", Prentice Hall, India, New Delhi, 1993.

COUR	RSE OU	ГСОМ	ES														
Upon	Upon completion of the course, students will be able to CO1 Define the system concept and steps in systems approach for the water resources engineering																
CO1	Define the system concept and steps in systems approach for the water resources engineering. Apply the knowledge of optimisation techniques such as Linear programming and simplex																
CO2	Apply metho			•	•		n tech	nique	s suc	h as L	inear p	orogran	nming ar	nd simple	÷Χ		
CO3	CO3 Explain single and multipurpose reservoir optimisation using dynamic programming																
CO4	Develo operat	•		ation r	model	base	d on (deterr	ninisti	c and	stocha	stic sir	nulation	for reser	voir		
CO5	Apply algorite			ld of v	vater	plann	ing ar	nd ma	nager	ment.			amming,	heuristic	;		
				N	IAPP:	ING (OF CO)s WI	TH P	Os ANI	D PSO	S					
				DDO	CDA	мог	J TCO	MES	(DO g)				PROGI	RAM SPECIFIC			
COs					OUTCOMES (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	-	-	-	-	-	2	-	-	-	-	3	2	2	2		
CO2	3	2	-	-	-	3	-	3	-	-	2	2	2	3	2		
CO3	3	3	2	-	2	2	-	2	-	-	3	2	1	3	3		
CO4	3	3	3	-	3	3	-	3	-	2	2	3	3	3	3		
CO5	3	3	3	3	3	3	-	3	2	-	3	3	3	3	3		

CE1013	PAVEMENT ENGINEERING L T	Р	С
	3 0	0	3
OBJECTIVES			
Student	gains knowledge on various IRC guidelines for designing rigid and flexible		
paveme	ents.		
Further	the student will be in a position to assess quality and evaluate the		
service	ability conditions of pavements		
UNIT I	PAVEMENT TYPES AND STRESS DISTRIBUTION		9
Introduction -	Pavement as layered structure - Pavement types rigid and flexible. Resilien		204
modulus - Stre	ss and deflections in pavements under repeated loading.	'	CO1
UNIT II	DESIGN OF FLEXIBLE PAVEMENTS		9
Flexible pave	ment design Factors influencing design of flexible pavement, Empirica		.1
Mechanistic er	npirical and theoretical methods - Design procedure as per IRC guidelines -	. (CO2
Design and spe	ecification of rural roads.		
UNIT III	DESIGN OF RIGID PAVEMENTS		9
Cement concr	ete pavements Factors influencing CC pavements – Modified Westergaard		
approach – De	sign procedure as per IRC guidelines - Concrete roads and their scope in India.	(CO3
UNIT IV	PAVEMENT CONSTRUCTION, EVALUATION AND MAINTENANCE		9
Construction of	f pavements - Construction Equipments-Methods of construction. Pavement		
Evaluation - Ca	auses of distress in rigid and flexible pavements – Evaluation based on Surface		
Appearance, 0	Cracks, Patches and Pot Holes, Undulations, Raveling, Roughness, Skic	(CO4
Resistance. S	tructural Evaluation by Deflection Measurements - Pavement Serviceability		
index, - Pavem	ent maintenance (IRC Recommendations only).		
UNIT V	STABILIZATION OF PAVEMENTS		9
Stabilization wi	th special reference to highway pavements – Choice of stabilizers – Testing and	T	
field control - S	tabilization for rural roads in India – Use of Geosynthetics in roads.		CO5
	TOTAL : 45 PE		

- 1. Khanna, S.K. and Justo C.E.G.and Veeraragavan, A, "Highway Engineering", New Chand and Brothers, Revised 10th Edition, 2014.
- 2. Yoder, R.J. and Witchak M.W. "Principles of Pavement Design", John Wiley 2000.
- 3. R.Srinivasa Kumar., "Pavement Engineering" Universities Press (India) Private Limited, Hyderabad, 2013.
- 4. Prithvi Singh Kandhal," Bituminous Road Construction in India", PHI Learning Private Limited, New Delhi, 2016.

- Rajib B.Mallick and Tahar El-Korchi, "Pavement Engineering Principles and Practice:, CRC Press, 2009
- 2. Kadiyali, L.R., "Principles and Practice of Highway Engineering", Khanna tech. Publications, New Delhi, 2005
- 3. Guidelines for the Design of Flexible Pavements, IRC-37–2012, The Indian roads Congress,

	r	T :	
$\mathbf{\Lambda}$	lew	1)0	lhı

4. Guideline for the Design of Rigid Pavements for Highways, IRC 58-1998, The Indian Road Congress, New Delhi.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explain concepts and standards adopted in Planning, Design and construction of Pavements.
CO2	Apply the knowledge of science and engineering fundamentals in designing flexible pavement. by adopting various design standards
CO3	Apply the standards adopted in designing rigid pavement.
CO4	Select appropriate methods for construction and evaluation of Pavements
CO5	Address the problem statement in construction of pavement and to impart knowledge in stabilization techniques.

MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	1	2	3	2	1	3	2	1	2	1	2	1
CO2	1	2	2	2	1	2	2	1	2	2	2	1	2	3	2
CO3	1	2	1	1	2	2	1	1	2	1	1	2	2	1	1
CO4	1	1	1	1	3	1	1	1	1	1	1	3	2	2	1
CO5	1	3	1	1	3	3	1	1	3	1	1	3	3	2	1

CE1014	TRAFFIC ENGINEERING AND MANAGEMENT	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To give	an overview of Traffic engineering, various surveys to be conducted, tra	affic	Reg	ula	tion,
manage	ement and traffic safety.				
UNIT I	TRAFFIC CHARACTERISTICS				10
Road Characte	ristics - Classification - Functions and standards - Road user character	istic	s –		
PIEV theory – \	Vehicle – Performance characteristics – Fundamentals of Traffic Flow –	Urba	an	(CO1
Traffic problem	s in India.				
UNIT II	TRAFFIC SURVEYS				7
Traffic Surveys	- Speed, journey time and delay surveys - Vehicle Volume Survey -	Meth	nods		•
and interpretati	on – Origin Destination Survey – Methods and presentation – Parking S	urve	y –	١,	CO2
Methods, interp	pretation and presentation – Statistical applications in traffic studies and	traffi	ic	╽`	
forecasting - le	vel of service – Concept, application and significance.				
UNIT III	TRAFFIC ENGINEERING REGULATION AND CONTROL				8
Capacity of Ro	otary intersection and Design - Capacity of signalized intersections -	– Tı	affic		
signals, warrai	nts, type - Design and coordination - Intersection channelization -	- G	rade	(CO3
separation – Tr	affic signs and road markings.				
UNIT IV	TRAFFIC SAFETY AND ENVIRONMENT				10
Road accident	ts – Causes, effect, prevention, and cost – street lighting – Tra	ffic	and		
environment h	azards - Air and Noise Pollution, causes, health effects and ab	ater	nent	(CO4
measures.					
UNIT V	TRAFFIC MANAGEMENT				10
Area Traffic Ma	nagement System – One way street system, exclusive traffic lanes, tida	ا flo	N		
operation, stag	gering of work hours and road pricing – Non road pricing options $_$ Parki	ng			
charges, Publi	c transport, Subsidies, Vehicle License fees, Road Building, Permit	sys	tem,	١,	CO5
Physical Traffic	Management Transport System Management (TSM) and Transport	Den	nand	`	003
Management	(TDM) Introduction to Intelligent Transportation Systems (IT	S)-	ITS		
Applications in	Traffic Management.				
	TOTAL	: 4	5 PE	RIC	DDS

- 1. Kadiyali. L.R. Traffic Engineering and Transport Planning, Khanna Publishers, Delhi,2008.
- 2. Khanna .K and Justo C.E.G. and Veeraragavan, A Highway Engineering, Nem Chand Bros., Roorkee, Revised 10th Edition, 2014.
- 3. Srinivasa Kumar, "Introduction to Traffic Engineering", Universities Press, 2018
- Partha Chakroborty and Animesh Das Principles of Transportation Engineering, PHI Learning Pvt. Ltd., 2011

- 1. Indian Roads Congress (IRC) Specifications: Guidelines and special publications on Traffic Planning and Management.
- 2. C. Jotin Khisty, Kent Lall, Transportation Engineering: An Introduction, Prentice Hall, 1998
- 3. Hobbs. F.D. Traffic Planning and Engineering, University of Brimingham, Peragamon Press Ltd, 1994.
- 4. Taylor MAP and Young W, Traffic Analysis New Technology and New Solutions, Hargreen

- Publishing Company, 1998.
- 5. Jason C.Yu Transportation Engineering, Introduction to Planning, Design and Operations, Elsevier, 1992.
- 6. Salter. R.I and Hounsell N.B, Highway Traffic Analysis and design, Macmillan Press Ltd.1996.
- 7. Roger P.Roess, William R.Mcshane and Elena S.Prassas, Traffic Engineering-Second Edition, Prentice Hall Publishers,, Upper Saddle River, New Jersey 1998.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the principles and standards adopted in Planning and Design of Traffic system.
G02	Apply the knowledge of science and engineering fundamentals in conducting traffic surveys
CO2	and analyze the problems.
CO3	Designing various types of control and regulatory measures to meet an efficient traffic network.
CO4	Select appropriate methods to ensure the safety of the road users and analyze the environmental issues related to traffic network.
CO5	Understand various traffic management measures in addressing the demand, pricing and ITS applications.

MAPPING OF COS WITH POS AND PSOS

Cos				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	2	-	3	-	1	-	-	3	2	-
CO2	3	-	3	3	2	2	-	-	-	1	-	2	3	3	1
CO3	-	3	3	2	3	-	-	-	3	2	2	3	3	3	1
CO4	2	3	2	1	3	-	-	3	3	3	2	3	3	3	2
CO5	-	2	1	1	2	-	1	3	3	1	1	3	2	1	1

CE1015	TRANSPORTATION PLANNING AND SYSTEMS	L	Т	Р	С
		3	0	0	3
OBJECTIVES		•			
❖ To give	an exposure on overview of the principles of the bus and rail transpo	rtati	on p	lanr	ing
and eva	aluation of the transportation projects.				
UNIT I	STUDY AREA AND SURVEYS				9
Importance of	planning and integrated transport facilities in urban areas – Delineation o	of stu	ıdy		
area and zon	ing – Conducting various surveys – Travel patterns, transport facili	ties	and	C	01
planning paran	neters.				
UNIT II	MODES				9
Basics of trip	generation - Trip distribution - Trip assignment and modal split n	node	ls –		02
Validation of th	ne model.			'	,02
UNIT III	PLAN PREPARATION AND EVALUATION				9
Preparation of	alternative plans – Evaluation techniques – Economic and financial eval	uatio	n –	_	03
Environment Ir	npact Assessment (EIA) – Case Studies.			'	,03
UNIT IV	BUS TRANSPORTATION				9
Characteristics	and bus transportation in urban areas – Fare policy – Route pla	annir	ng –		04
Planning of ter	minals – Break even point and its relevance.			'	,04
UNIT V	RAIL TRANSPORTATION				9
Characteristics	s of suburban, IRT and RRT systems – Planning of rail terminals – Fare p	oolic	y –		05
Unified traffic a	and transport authority.			'	,05
	TOTAL	_ : 4	5 PE	RIC	DS

- 1. Michael J.Bruton, Introduction to Transportation Planning, Hutchinson, London, 1995.
- 2. Kadiyali. L.R., Traffic Engineering and Transport Planning, Khanna Publishers, Delhi, 2008.

REFERENCE BOOKS

- 1. John W. Dickey, Metropolitan Transportation Planning, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1990.
- 2. C. Jotin Khisty, Kent Lall, Transportation Engineering: An Introduction, Prentice Hall, 1998
- 3. Juan de Dios Ort zar and Luis G. Willumsen, Modelling Transport, John Wiley & Sons 2001
- 4. Chennai Comprehensive Traffic Study, Chennai Metropolitan Development Authority, 2007.

COURSE OUTCOMES

CO1	Understand the concepts and surveys adopted in Transportation planning						
CO2	Knowledge on modelling of trip generation assigning and distribution techniques in transportation system.						
CO3	Planning and evaluating transportation projects through various case studies.						
CO4	Knowledge on planning of bus transportation system in urban areas.						
CO5	Planning of various rail transportation and fare policies adopted.						
	MAPPING OF COs WITH POs AND PSOs						

Cos	PROCEDAM OF THE COMES (DO.)	PROGRAM SPECIFIC
Cos	PROGRAM OUTCOMES (POs)	OUTCOMES (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	2	-	3	-	1	-	-	3	2	-
CO2	3	-	3	3	2	2	-	-	-	1	-	2	3	3	1
СОЗ	-	3	3	2	3	-	-	-	3	2	2	3	3	3	1
CO4	2	3	2	1	3	-	-	3	3	3	2	3	3	3	2
CO5	-	2	1	1	2	-	1	3	3	1	1	3	2	1	1

CE1016	URBAN PLANNING AND DEVELOPMENT	L	T	Р	С		
		3	0	0	3		
OBJECTIVES							
To ena	ble students to have the knowledge on planning process and to introduce	e to	the				
studen	ts about the regulations and laws related to Urban Planning.						
UNIT I	BASIC ISSUES				9		
Definition of H	uman settlement, Urban area, Town, City, Urbanisation, Suburbanisation	, Url	oan				
sprawl, Peri-u	rban areas, Central Business District (CBD), Classification of urban	area	as -	- C	01		
Trend of Urba	nisation at International, National, Regional and State level.						
UNIT II	PLANNING PROCESS				9		
Principles of	Planning - Types and Level of Plan, Stages in Planning Process -	- Go	oals,		:02		
Objectives, De	elineation of Planning Areas, Surveys and Questionnaire Design.			'	,02		
UNIT III	DEVELOPMENT PLANS, PLAN FORMULATION AND EVALUATION	l			9		
Scope and Co	ntent of Regional Plan, Master Plan, Detailed Development Plan, Develo	pme	nt				
Control Rules,	Transfer of Development Rights , Special Economic Zones- Development	nt of		C	CO3		
small town and	d smart cities-case studies,						
UNIT IV	PLANNING AND DESIGN OF URBAN DEVELOPMENT PROJECT				9		
Site Analysis,	Layout Design, Planning Standards, Project Formulation – Evaluation, Pl	an		(:04		
Implementation, Constraints and Implementation, Financing of Urban Development Projects.							
UNIT V	LEGISLATION, DEVELOPMENT AND MANAGEMENT OF URBAN S	YST	ЕМ		9		
Town and Cou	untry Planning Act, Land Acquisition and Resettlement Act etc., Urban Pla	annir	ng		05		
Standards and	Regulations, Involvement of Public, Private, NGO, CBO and Beneficiarion	es.		'	,03		
	TOTAL	_ : 4	5 PE	RIO	DS		

- Goel, S.L Urban Development and Management, Deep and Deep publications, New Delhi
 2002
- 2. George Chadwick, A Systems view of planning, Pergamon press, Oxford 1978
- 3. Singh V.B, Revitalised Urban Administration in India, Kalpaz publication, Delhi, 2001
- 4. Edwin S.Mills and Charles M.Becker, Studies in Urban development, A World Bank publication, 1986

REFERENCE BOOKS

- 1. Tamil Nadu Town and Country Planning Act 1971, Government of Tamil Nadu, Chennai
- 2. Goel S.L., Urban Development and Management, Deep and Deep Publications, New Delhi,2002
- 3. Thooyavan, K.R., Human Settlements A Planning Guide to Beginners, M.A Publications, Chennai, 2005
- 4. CMDA, Second Master Plan for Chennai, Chennai 2008

COURSE OUTCOMES

	Understand the basic concepts in urban planning and development.
CO2	Knowledge on principles of planning, surveys and analysis. in developing an urban area.

CO3		Knowledge on development of regional, master plan and norms for development of smart cities.														
CO4	Planni	Planning of standards, implanting and financing of Urban projects.														
CO5	Unders area.	Understand the norms, legal aspects and stakeholders role in planning an urban area.														
MAPPING OF COs WITH POs AND PSOs																
Cos		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	-	-	-	2	-	-	3	-	3	-	-	3	3	-	
CO2	3	3	3	3	2	-	-	-	3	-	-	-	3	-	2	
CO3	3	1	2	-	-	2	-	3	-	2	-	3	3	-	2	
			1	1	i e	1	1		i				2	_	3	
CO4	-	1	2	3	-	2	-	3	3	2	3	3	2	2	3	

CE1017	DESIGN OF PLATE AND SHELL STRUCTURES	L	T	P	С
		3	0	0	3
OBJECTIVE	S				
To le	arn the design of plate and shell and spatial structures				
UNIT I	THIN PLATES WITH SMALL DEFLECTION				9
Laterally loa	ded thin plates - Governing differential equation, various boundary conditi	ons.		C	01
UNIT II	RECTANGULAR PLATES				9
Simply supp	orted rectangular plates - Navier solution and Levy's method – Loading.			C	02
UNIT III	ANALYSIS OF THIN SHELLS				9
Shells of re	volution - Spherical dome, Conical shell and ellipsoid of revolution	- S	hells	;	
of translation	n - Cylindrical shell and hyperbolic paraboloid - Classification of shells -	Тур	es o	f c	03
shells - Stru	ctural action				
UNIT IV	DESIGN OF SHELLS				9
Spherical dome, conical shell and Cylindrical shell.					
UNIT V	SPACE FRAMES				9
•	nes – Configuration – Node connector- Types – General principles	of de	esign	· (05
philosophy-					
	TOTA	L : 4	5 PE	ERIC	DS

004047

- 1. P.C.Varghese, Design of Reinforced Concrete Shells and Folded Plates, PHI Learning Private Limited, New Delhi, 2010.
- 2. R.Szilard, Theory and Analysis of Plates, Prentice Hall Inc., 1995.

REFERENCE BOOKS

- 1. Billington D.P. Thin Shell Concrete Structures, McGraw Hill, 1995.
- 2. Chatterjee B.K. Theory and design of Concrete Shells, Oxford and IBH Publishing Co., New Delhi 1998.
- 3. N.Subramanian, Principles of Space Structures, Wheeler Publishing Co. 1999.
- 4. Maan Jawad, Theory and Design of Plate and Shell Structures, 1994.

COURSE OUTCOMES

CO1	Assess the strength of thin plates under different types of loads.
CO2	Analyze thin plates using Navier's method and Levy's method.
CO3	Analyze circular plates under axis - symmetric deflection.
CO4	Classify different types of shells and study their behavior.
CO5	Analyze space frame.

	MAPPING OF COs WITH POs AND PSOs	
COs	PROGRAM OUTCOMES (POs)	PROGRAM SPECIFIC
COS	I ROGRAM OUTCOMES (I OS)	OUTCOMES (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1	1	1	1	2	1	1	1	2	1	2
CO2	3	2	3	1	1	1	1	1	1	1	1	1	2	1	2
СОЗ	3	2	3	1	1	1	1	1	1	1	1	1	2	1	2
CO4	2	2	3	1	1	1	1	1	1	1	1	1	2	1	2
CO5	2	2	3	1	1	1	1	1	1	1	1	1	2	1	2

OBJECTIVES							
To understand the behaviour and performance of prestressed concrete structure	? S.						
To Compare the behaviour of prestressed concrete members with that of the no	ormal reinfo	orced					
concrete structures.							
To Understand the performance of composite members.							
To learn the design of prestressed concrete structures.							
UNIT I INTRODUCTION		9					
Basic concepts-Advantages-Materials required-Systems and methods of prest	ressing-	1					
Analysis of sections- Stress concept-Strength concept-Load balancing concept-E	Effect of						
loading on the tensile stresses in tendons -Effect of tendon profile on deflections-	Factors	CO1					
influencing deflections–Calculation of deflections –Short term and long-term deflections-Losses							
of prestress –Estimation of crack width.							
UNIT II DESIGN FOR FLEXURE AND SHEAR		9					
Basic assumptions for calculating flexural stresses–Permissible stresses in steel and	concrete						
as perl.S.1343Code–Design of sections of Type I and Type II post-tensioned a							
tensioned beams–Check for strength limit based on I.S. 1343 Code –Layout of cables	- I	CO2					
tensioned beams-Location of wires in pre-tensioned beams -Design for shea	-	002					
onl.S.1343Code.							
UNIT III DEFLECTION AND DESIGN OF ANCHORAGE ZONE		9					
Factors influencing deflections—Short term deflections of uncracked members—Pred	iction of						
long-term deflections due to creep and shrinkage—Check for serviceability limit							
deflection. Determination of anchorage zone stresses in post-tensioned beams by		CO3					
method, Guyon's method and IS1343code–design of anchorage zone reinforcement	•	COS					
for transfer bond length in pre-tensioned beams.	Onook						
UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS		9					
Analysis and design of composite beams – Methods of achieving continuity in co	ntinuous	9					
beams— Analysis for secondary moments—Concordant cable and linear transfor		004					
Calculation of stresses– Principles of design.	mation-	CO4					
UNIT V MISCELLANEOUS STRUCTURES		9					
Design of tension and compression members— Tanks, pipes and poles — Partial prestr							
Definition, methods of achieving partial prestressing, merits and demerits of	partial	CO5					
prestressing.							
TOTAL	.: 45 PERI	ODS					

PRESTRESSED CONCRETE STRUCTURES

C

3

3 0

TEXT BOOKS

CE1018

- 1. KrishnaRaju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012
- 2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.

REFERENCE BOOKS

- 1. Rajagopalan.N, "Prestressed Concrete", Narosa Publishing House, 2002.
- 2. Dayaratnam.P., SarahP, Prestressed Concrete Structures, Seventh Edition, Oxford and IBH,

- 2017.
- 3. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., NewDelhi,2013.
- 4. Sinha.N.C. And Roy.S.K. Fundamentals of Prestressed Concrete, S.Chand and Co. Ltd.,2011.
- 5. IS 1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Design a prestressed concrete beam accounting for losses.
CO2	Design for flexure and shear.
CO3	Design the anchorage zone for post tensioned members and deflection in beams.
CO4	Design composite members and continuous beams.
CO5	Design water tanks, pipes and poles.

MAPPING OF COS WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	2	-	-	1	1	-	1	3	-	3
CO2	3	2	3	-	-	1	-	-	1	1	-	1	3	-	3
CO3	3	2	3	-	-	1	-	-	1	1	-	1	3	-	3
CO4	2	2	3	-	-	1	-	-	1	1	-	1	3	-	3
CO5	2	2	3	-	-	1	-	-	1	1	-	1	3	-	3

CE1019	INDUSTRIAL STRUCTURES	L	Т	Р	С
		3	0	0	3
OBJECTIVE	S		ı		
To learn	the planning, layout, functional aspects of industries and design of major	r ste	eel a	nd I	R.C
structure	s needed for industries.				
UNIT I	PLANNING				9
	of industries and industrial structures – Site Planning and Selection – ayout for Industries and buildings - Guidelines from factories act.	Ext	erior	С	:01
UNIT II	FUNCTIONAL REQUIREMENTS				9
Lighting – Ve	entilation – Noise and Vibration control – Fire safety			С	02
UNIT III	DESIGN OF STEEL STRUCTURES				9
•	red and Mill buildings – Transmission Lines Towers – plate girders. Bunk cable racks- Chimney.	ers	and	С	:03
UNIT IV	DESIGN OF R.C. STRUCTURES				9
Corbels, Bra	ckets and Nibs - Silos and bunkers –Chimney –Cooling Towers (Principles	only	y)	С	04
UNIT V	PREFABRICATION				9
•	prefabrication and pre cast construction – Prestressed precast roof trusses panels- Handling and erection stresses –joints in precast structures.	s — F	loor	С	:05
	TOTAL	: 4	5 PE	RIO	DS

- 1. Ramamrutham.S., Design of Reinforced Concrete Structures, Dhanpat Rai Publishing Company, 2007.
- 2. Varghese.P.C., Advanced Reinforced Concrete Design, PHI, Eastern Economy Editions, Second Edition, 2005.
- 3. Subramanian, N., Design of Steel Structures, Oxford University Press, 2008.

REFERENCE BOOKS

- 1. Henn W. Buildings for Industry, Vol.I and II, London Hill Books, 1995
- 2. Handbook on Functional Requirements of Industrial buildings, SP32–1986, Bureau of Indian Standards, 1990.
- 3. Handbook of Industrial Lighting, Stanley L.Lyons, Butterworths, London.1981
- 4. Koncz, J., Manual of Precast Construction Vol. I and II, Bauverlay GMBH, 1971.
- 5. Ramachandra and Virendra Gehlot, Design of steel structures –Vol. 2, Scientific Publishers, 2012.
- 6. Handbook on Precast Construction, An Indian Concrete Institute Publication, 2016.9. IS Code 15284 (Part 1): 2003 "Design and Construction for Ground Improvement Guidelines" (Stone Column), Bureau of Indian Standards, New Delhi.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Know the requirements of various industries and get an idea about the materials used and planning of various industrial components.

CO2	2 Acquire the functional requirements for industrial structures.																	
CO3											chimne	ve and	nre-engir	neered bui	ildings			
														iccica bai	indings.			
CO4	Design special RC structures like corbels, silos, bunkers, chimneys, plates and shells.																	
CO5 Understand the principles of prefabrication and prestressing																		
MAPPING OF COs WITH POs AND PSOs																		
				PROGRAM SPECIFIC														
COs		PROGRAM OUTCOMES (POs)													OUTCOMES (PSOs)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO												OUIC	OMES (PSOS)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		ì	PSO3			
CO1	PO1 3	PO2 2	PO3	PO4 -	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		ì				
CO1				PO4 -	PO5		P07 1 1		PO9 -	PO10 -	PO11 -		PSO1	ì	PSO3			
	3	2	3	PO4 - -	PO5	2	PO7 1 1 1		PO9 - -	PO10 - -	PO11 - -		PSO1 3	ì	PSO3 2			

CO5

CE1020 MAINTENANCE, REPAIR AND REHABILITATION OF L T P C										
	STRUCTURES									
		3	0	0	3					
OBJECTIVES		ı								
To accompany	quire the knowledge on quality of concrete, durability aspects, causes	of d	eteri	orat	ion,					
assess	ment of distressed structures, repairing of structures and demolition proc	edu	res							
UNIT I	MAINTENANCE AND REPAIR STRATIGES				9					
Maintenance,	Repair and Rehabilitation - Facets of Maintenance - Importance of Maintenance	enai	nce -							
Various aspe	cts of Inspection - Assessment procedure for evaluating a damaged st	ruct	ure -	C	:01					
causes of dete	erioration.									
UNIT II	STRENGTH AND DURABILITY OF CONCRETE				9					
Quality assur	ance for concrete - Strength, Durability, of concrete - Cracks, differen	nt ty	pes,							
causes - Effe	cts due to climate, temperature, Sustained elevated, Corrosion - Effects	of c	over	C	02					
thickness.										
UNIT III	SPECIAL CONCRETES				9					
Polymer cond	rete - Sulphur infiltrated concrete - Fibre reinforced concrete - High	stre	ngth							
concrete - H	gh performance concrete - Vacuum concrete - Self compacting co	ncre	te -	C	O 3					
Geopolymer of	oncrete - Reactive powder concrete - Concrete made with industrial wast	es.								
UNIT IV	TECHNIQUES FOR REPAIR AND PROTECTION METHODS			•	9					
Non-destructiv	ve Testing Techniques, Epoxy injection, Shoring, Underpinning, C	orro	sion							
protection te	chniques – Corrosion inhibitors, Corrosion resistant steels, Coa	tings	s to	C	04					
	cathodic protection									
reinforcement	cathodic protection.									
reinforcement UNIT V	REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES	3			9					
UNIT V	·			<u> </u>	9					
UNIT V Strengthening	REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES	fire,								
UNIT V Strengthening	REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES of Structural elements, Repair of structures distressed due to corrosion,	fire,			9 O5					

MAINTENANCE DEDAID AND DELIABILITATION OF

TEXT BOOKS

054000

- 1. Shetty.M.S. Jain A K., Concrete Technology Theory and Practice, S.Chand and Company, Eighth Edition, 2019.
- 2. B.Vidivelli, Rehabilitation of Concrete Structures Standard Publishes Distribution.1st edition 2009.

REFERENCE BOOKS

- 1. Hand book on Seismic Retrofit of Buildings, CPWD and Indian Buildings Congress, Narosa Publishers, 2008.
- 2. Hand Book on "Repair and Rehabilitation of RCC Buildings" Director General works CPWD ,Govt of India , New Delhi 2002
- 3. P.C.Varghese, Maintenance Repair and Rehabilitation & Minor works of building, Prentice Hall India Pvt Ltd 2014.
- 4. R. Dodge Woodson, Concrete Structures, Protection, Repair and Rehabilitation, Butterworth-Heinemann, Elsevier, New Delhi 2012

COURSE OUTCOMES

CO1	Know the importance of inspection and maintenance.
CO2	Study the Impacts of cracks, corrosion and climate on structures.

CO3	Know	about	High F	Know about High Performance concrete.														
CO4	Under	stand t	he ma	aterial	s and	techr	niques	nee	ded fo	r repai	rs.							
CO5	Know	Know the failures of the structures and demolition techniques.																
	MAPPING OF COs WITH POs AND PSOs																	
COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03																
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2			
CO1	3	3	3	3	3	2	2	1	3 2	2	1 2	2	1 2	3	2			

CO4

CO5

CE1021	POWERPLANT STRUCTURES	L	T	Р	С
		3	0	0	3
OBJECTIVES					•
To gair	n knowledge about principles, planning, layout, structural requirements	and	ana	ysis	s of
power p	plants.				
UNIT I	FUNDAMENTALS OF POWER PLANTS				9
Introduction -	Classification of Power Plants - Principles of Power Plant - Lay out o	f Po	ower		
Plant Building	 Selection of type of generation – Resources for power generation – I 	Mac	hine	C	01
foundation.					
UNIT II	HYDRO ELECTRIC POWER PLANTS				9
Elements of h	ydro-electric power plants – Advantages and disadvantages of water	pow	ver -		
General and e	essential elements of Hydro electric Power Plant – Structural requirer	men	ıts –	C	02
Selection of sit	e for hydroelectric plant – Penstocks and surge Tanks in Power Station.				
UNIT III	THERMAL POWER PLANTS				9
Planning, Anal	ysis of thermal power plants – Layout – Ash handling – Dust collection –	Indu	ıced		
draught and na	atural cooling towers – Air/water pollution by thermal power plants.			C	03
UNIT IV	NUCLEAR POWER PLANTS				9
General chara	cteristics of Nuclear Power Plants - Classification of reactors - Pres	ssur	ized		
Water Reacto	r, Boiling Water Reactor, Fusion Power Reactor, Heavy Water Re	eact	or -		
Selection criter	ria of materials for different systems – Containment structures – Nuclea	ar po	ower	'	04
plant safety me	easures –Safety systems and support systems.				
UNIT V	NON CONVENTIONAL POWER PLANTS				9
Types – Wind I	power plants – Selection of wind mill – Tidal power plants – Solar therma	l po	wer	Τ.	<u> </u>
plants - Geoth	ermal power plants – Principles and essential features.			C	CO5
	TOTAL	. : 4	5 PE	_ RIC	DS

- 1. S.C. Sharma and G.R. Nagpal, Power Plant Engineering, Khanna Publishers, 2013.
- 2. Raja A.K, Amit Prakash Srivastava and Manish Dwivedi, Power Plant Engineering, New Age International Publishers, 2013.

REFERENCE BOOKS

- 1. R.K Rajput, Power Plant Engineering, Fifth Edition, 2016.
- 2. P.C Sharma, power Plant Engineering, S.K. Kataria & Sons; 2013.
- 3. Wei Tong, Wind Power Generation and Wind Turbine Design, WIT Press / Computational Mechanics, First edition, 2010.
- 4. Dipak k Sarkar, Thermal Power plant: Design and Operation, Elsevier Publisher 2015.

COURSE OUTCOMES

CO1	Explain the principles, layout and functional aspects of a power plant structure.
CO2	Analyze and design the layout and components of hydroelectric power plant.
CO3	Explain, analyze and design the layout and components of Thermal power plant.
CO4	Explain the functioning of a nuclear power plant and design its components.

CO5	Develop an understanding of the various non-conventional sources of energy and design the layout and components. MAPPING OF COs WITH POS AND PSOs															
				N	IAPP	ING (OF CO)s WI	TH P	Os AN	D PSO	S				
COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	-	-	-	1	1	2	-	-	1	3	-	2	
CO2	3	2	3	-	-	-	1	1	1	-	-	1	3	-	2	
CO3	3	2	3	-	1	-	1	1	1	-	-	1	3	-	2	
CO4	2	2	3	-	-	-	1	1	1	-	-	1	3	-	2	
CO5	2	2	3	-	-	-	1	1	1	-	-	1	3	-	2	

CE1022	PREFABRICATED STRUCTURES L 1	•	Р	С								
	3 (0	3								
OBJECTIVES												
To und	derstand the principles of prefabrication, behaviour and design of pre	abr	ica	ted								
compor	nents and structural connections.											
To approximate To	reciate modular construction and industrialised construction											
UNIT I INTRODUCTION												
•	abrication - Principles- Materials - Modular co-ordination – Standardization uction – Transportation – Erection - Disuniting of Structures.	-	С	01								
UNIT II	PREFABRICATED COMPONENTS			9								
	uctural components–Large panel constructions–Construction of roof, floor sla s–Columns–Shear walls.	os	CO2									
•			<u> </u>									
UNIT III	DESIGN PRINCIPLES			9								
•	ructural components–Beam, Column and Corbel-Stress limitations–Handlig, handling with controlled cracking–Design for stripping forces.	ng	CO									
UNIT IV	JOINTS IN STRUCTURAL MEMBERS			9								
Column, Colum	erent structural connections–Beam to Column, Beam to Beam, Column on to Foundation, Connections between wall panels, Connections between flowions and detailing–Design of expansion joints-Jointing Materials.		С	04								
UNIT V	DESIGN FOR EARTHQUAKES AND CYCLONES			9								
•	ollapse–Codal provisions–Equivalent design loads for considering abnorn earthquakes, cyclones etcImportance of avoidance of progressive collapse.	al	С	O5								
	TOTAL : 45	'EF	₹IO	DS								

- 1. Hubert Bachmann and Alfred Steinle, Precast Concrete Structures, 2012.
- 2. Laszlo Mokk, Prefabricated Concrete for Industrial and Public Structures, Akademiai Kiado, Budapest, 1964.

REFERENCE BOOKS

- 1. PCI Design Hand Book, 6th Edition, 2004.
- 2. Handbook on Precast Concrete for Buildings, ICI Bulletin 02, First Edition, 2016.
- 3. A.S.G. Bruggeling and G.F.Huyghe, Prefabrication with concrete, Netherlands: A.A.Balkema Publishers, 1991.
- 4. Glover C.W, Structural Precast Concrete, Asia Publishing House, 1965.

COURSE OUTCOMES

CO1	Understand the principles of modular coordination
CO2	Know the construction of roof and floors
CO3	Design for stripping forces
CO4	Identify the different types of connections between structural members
CO5	Understand the concept of progressive collapse

	MAPPING OF COs WITH POs AND PSOs														
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	2	-	-	1	1	-	1	3	-	2
CO2	3	2	3	-	-	1	-	-	1	1	-	1	3	-	2
CO3	3	2	3	-	-	1	-	-	1	1	-	1	3	-	2
CO4	2	2	3	-	-	1	-	-	1	1	-	1	3	-	2
CO5	2	2	3	-	-	1	-	-	1	1	-	1	3	-	2

OBJECTIVES ❖ To understand the design philosophy of tall buildings, the loading and behaviour of structure	3												
To understand the design philosophy of tall buildings, the loading and behaviour of structur													
systems.													
UNIT I DESIGN CRITERIA AND MATERIALS	9												
Design Philosophy - Modern concepts - Materials used - High Performance Concrete, Fibre													
Reinforced Concrete, Light weight concrete, Self-Compacting Concrete, High strength steel, C													
Composites.													
UNIT II LOADING	9												
Gravity Loading - Dead load, Live load - Live load reduction techniques, Impact load,													
Construction load, Sequential loading. Wind Loading – Static and Dynamic Approach,	72												
Analytical method, Wind Tunnel Experimental methods. Earthquake Loading – Equivalent	<i>J</i>												
lateral Load analysis, Dynamic Analysis, Combination of Loads.													
UNIT III BEHAVIOUR OF STRUCTURAL SYSTEMS	9												
Factors affecting the growth, height and structural form, Behaviour of Braced frames, Rigid													
Frames, in filled frames, Shear walls, Coupled Shear walls, Wall - Frames, Tubular and CC	D 3												
Outrigger – Hybrid systems													
UNIT IV ANALYSIS	9												
Modeling for approximate analysis, accurate analysis and reduction techniques, Analysis of	24												
structures as an integral unit, Analysis for drift and twist. Computerized 3D analysis.	J4 												
UNIT V DESIGN PARAMETERS	9												
Design for differential movement, Creep and Shrinkage effects, Temperature Effects and Fire	25												
Resistance, Stability of Tall Structures - P∆ Effects, Buckling analysis of Tall Buildings.	<i>)</i>												
TOTAL : 45 PERIOD	os												

- 1. Bryan Stafford Smith and Alex Coull, Tall Building Structures, Analysis and Design, John Wiley and Sons, Inc., 2011.
- 2. Taranath B.S, Structural Analysis and Design of Tall Buildings: Steel and Composite Construction, McGraw Hill, 2011.

REFERENCE BOOKS

- 1. Lin T.Y. and Burry D.Stotes, Structural Concepts and Systems for Architects and Engineers, John Wiley, 1994.
- 2. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 3. Wolfgang Schuler, High Rise Building Structures, John Wiley & Sons, New York, 1986.
- 4. Kolousek V, Pimer M, Fischer O and Naprstek J, Wind effects on Civil Engineering Structures. Elsevier Publications.1984.

COURSE OUTCOMES

CO1	Explain the design aspects and the various innovative materials which can be used for the
COI	construction of tall buildings
CO2	Apply the knowledge of engineering fundamentals to characterize various types of loading

	which	which could be considered for the analysis of tall building.														
CO3	Identify	Identify various structural systems, their behavior and performance under different loading														
CO3	conditi	ons.														
CO4	Analyze the structures as an integral unit for drift and twist.															
CO5	Desigr	Design tall structures under different conditions like stability considerations, creep, shrinkage,														
COS	and temperature and fire resistance.															
	MAPPING OF COs WITH POs AND PSOs															
				PROGRAM SPECIFIC												
COs				OUTCOMES (PSOs)												
003													0010	COMES (PSOs)	
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSOs)	
CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		1	·	
						PO6 1 3							PSO1	PSO2	PSO3	
CO1	1	1	1	1	1	1	3	1	1	1	1	1	PSO1	PSO2 2	PSO3	
CO1	1 3	1 3	1 3	1 3	1 3	1	3	1 3	1	1	1	1 1	PSO1 1 2	PSO2 2 2	PSO3 2 2	

CE1024	NON DESTRUCTIVE TESTING AND ITS APPLICATIONS	L												
		3	0	0	3									
OBJECTIVES														
To learn	n the principles of measurements of static and dynamic response of	stru	ıctur	es	and									
carryout	the analysis of results.													
UNIT I	NON DESTRUCTIVE TESTING METHODS				9									
Load testing of	on structures, buildings, bridges and towers – Rebound Hammer –	aco	ustic											
emission- ultras	sonic testing principles and application – Holography – use of laser for s	truc	tural	ر ا	01									
testing - Brittle	e coating, Advanced NDT methods – Ultrasonic pulse echo, Impa	ct e	cho,		,01									
impulse radar techniques, GECOR, Ground penetrating radar (GPR)														
	MODEL ANALYSIS				9									
Model Laws -	Laws of similitude - Model materials - Necessity for Model and	alys	is –											
Advantages – A	applications – Types of similitude – Scale effect in models – Indirect mod	del s	tudy	(02									
 Direct model 	study - Limitations of models - investigations - structural problems -L	Jsag	je of		,02									
influence lines in	n model studies.													
UNIT III	FORCES AND STRAIN MEASUREMENT				9									
-	erimental stress analysis methods, Errors in measurements - Strain	•	•											
principle, types,	performance and uses. Photo elasticity - principle and applications - H	lydra	aulic	(03									
jacks and press	sure gauges - Electronic load cells - Proving Rings - Calibration of	Tes	sting		,03									
Machines – Lon	g- term monitoring – vibrating wire sensors– Fibre optic sensors.													
UNIT IV	MEASUREMENT OF VIBRATION AND WIND FLOW				9									
Characteristics	of Structural Vibrations - Linear Variable Differential Transformer (L	_VD	T) –											
	velocity and acceleration measurements. Vibration meter - Seism	•	•	6	04									
Vibration Ana	alyzer – Display and recording of signals – Cathode Ray Oscilloscop	oe -	· XY	`										
	unnels – Flow meters – Venturimeter – Digital data Acquisition systems.													
UNIT V	DISTRESS MEASUREMENTS AND CONTROL				9									
Diagnosis of di	istress in structures – Crack observation and measurements – corre	osio	n of											
	n concrete – Half cell, construction and use – damage assessment – co			6	05									
•	molition – Techniques for residual stress measurements – Structura	I He	ealth	`										
Monitoring.														
	TOTAL	. : 4	5 PE	RIC	DS									

- 1. Ganesan.T.P, "Model Analysis of Structures", University Press, India, 2000.
- 2. Ravisankar.K.and Chellappan.A., "Advanced course on Non-Destructive Testing and Evaluation of Concrete Structures", SERC, Chennai, 2007.
- 3. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2006.
- 4. Sirohi.R.S., Radhakrishna.H.C, "Mechanical Measurements", New Age International (P) Ltd. 1997.

REFERENCE BOOKS

- Dalley .J. W and Riley. W. F, "Experimental Stress Analysis", McGraw Hill Book Company, N.Y. 1991
- 2. Bray .D.E, and Stanley .R.K, "Non-Destructive Evaluation", McGraw Hill Publishing Co., New York, 1989.

- 3. Garas .F.K, Clarke .J.L, and Armer .G.S.T, "Structural Assessment", Butterworths, London, 1987.
- 4. Srinath .L.S,.et al, "Experimental Stress Analysis", Tata McGraw Hill company Ltd., New Delhi, 1984.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Cain Installation on New Destructive testing Techniques
COI	Gain knowledge on Non Destructive testing Techniques
CO2	Acquire knowledge on the concepts model analysis
CO3	Have adequate knowledge on the concepts of force and strain measurement methods
CO4	Get knowledge on vibration measurements and wind flow
CO5	Get knowledge on distress measurement and control

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	2	2	2	2	3	1	2
CO2	3	3	3	3	3	2	2	1	2	2	2	2	3	1	2
CO3	3	3	3	3	3	2	2	1	2	1	2	2	3	1	2
CO4	3	3	3	3	3	2	2	1	2	1	2	3	3	1	2
CO5	3	3	3	3	3	2	2	1	2	1	2	3	3	1	2

CE1025	DISASTER MANAGEMENT	L	T	Р	С
		3	0	0	3
OBJECTIVES					
⋄ Тор	rovide students an exposure to disasters, their significance and types.				
To e	nsure that students begin to understand the relationship between vulnera	bilit	у,		
disas	sters, disaster prevention and risk reduction				
❖ To ga	ain a preliminary understanding of approaches of Disaster Risk Reduction	n (D	RR)		
To e	nhance awareness of institutional processes in the country				
⊹ To de	evelop rudimentary ability to respond to their surroundings with potential				
	ster response in areas where they live, with due sensitivity				
UNIT I	INTRODUCTION TO DISASTERS				9
	aster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disa	aete	re _		9
	andslide, Flood, Drought, Fire etc – Classification, Causes, Impacts in				
•	nic, political, environmental, health, psychosocial, etc Differential imp		•		
	e, class, gender, age, location, disability – Global trends in disasters			- $ -$	01
disasters, pand	demics, complex emergencies, Climate change- Dos and Don'ts during	var	ious		
types of Disast	ers.				
UNIT II	APPROACHES TO DISASTER RISK REDUCTION				9
Disaster cycle	 Phases, Culture of safety, prevention, mitigation and preparedness cor 	mmı	unity		•
based DRR, S	Structural- nonstructural measures, Roles and responsibilities of- com	nmu	nity,		
•	j Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other			- $ -$	02
	itional Processess and Framework at State and Central Level- State			· -	_
J	Authority(SDMA) – Early Warning System – Advisories from App	orop	riate		
Agencies.					_
UNIT III	INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMEN		l		9
	ng Vulnerabilities, differential impacts, impact of Development projects				
	ments, changes in Land-use etc Climate Change Adaptation- IPCC S in the context of India – Relevance of indigenous knowledge, app			- $ -$	CO3
	I local resources.	лор	ııaı c		
UNIT IV	DISASTER RISK MANAGEMENT IN INDIA				9
	/ulnerability profile of India, Components of Disaster Relief: Water	· F	ood		
	nelter, Health, Waste Management, Institutional arrangements (Mi	•			
	Preparedness, Disaster Management Act and Policy – Other related	•			
•	imes and legislation – Role of GIS and Information Technology Compo	•		- $ -$	04
	Risk Assessment, Response and Recovery Phases of Disaster –				
Damage Asses					
UNIT V	DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES A	AND	FIE	LD	9
	WORKS				
Landslide Haz	ard Zonation: Case Studies, Earthquake Vulnerability Assessment of B	Build	ings		-
and Infrastruct	ure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding	g: S	torm		
Surge Assess	ment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire	e: C	Case	C	CO 5
	Made disasters: Case Studies, Space Based Inputs for Disaster Mitigat	tion	and		
Management a	nd field works related to disaster management.			\perp	
	TOTAL	. : 4	5 PE	RIO	DS

- Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCE BOOKS

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Differentiate the types of disasters, causes and their impact on environment and society
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation
CO3	enhance awareness of institutional processes in the country
CO4	develop rudimentary ability to respond to their surroundings with potential
	disaster response in areas where they live, with due sensitivity
CO5	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster
CO3	damage assessment and management.

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	0	0	2	2	1	3	0	1	2	0	0	2
CO2	3	2	0	0	0	2	2	1	2	0	2	1	0	0	2
СОЗ	3	2	0	0	0	1	2	1	2	0	1	2	0	0	2
CO4	3	2	0	0	0	1	1	1	1	0	1	3	0	0	1
CO5	3	2	0	0	0	1	2	1	3	0	1	3	0	0	2

CE1026	GEO-ENVIRONMENTAL ENGINEERING L T	Р	С
	3 0	0	3
OBJECTIVES			
The student	udent acquires the knowledge on the Geotechnical engineering problems ass	ocia	ated
with so	oil contamination, safe disposal of waste and remediate the contaminated s	oils	by
differen	t techniques thereby protecting environment.		
UNIT I	GENERATION OF WASTES AND CONSQUENCES OF SOIL POLLUTION		9
Introduction to	Geo environmental engineering - Environmental cycle - Sources, production		
and classificat	tion of waste - Causes of soil pollution - Factors governing soil pollution	C	01
interaction clay	minerals - Failures of foundation due to waste movement.		
UNIT II	SITE SELECTION AND SAFE DISPOSAL OF WASTE		9
Safe disposal	of waste - Site selection for landfills - Characterization of land fill sites and	T	
waste - Risk	assessment - Stability of landfills - Current practice of waste disposal -	_	
Monitoring faci	lities - Passive containment system - Application of geosynthetics in solid waste	C	02
management -	- Rigid or flexible liners.		
UNIT III	TRANSPORT OF CONTAMINANTS		9
Contaminant tr	ansport in sub surface - Advection, Diffusion, Dispersion - Governing equations		•
- Contaminant	t transformation – Sorption – Biodegradation – Ion exchange – Precipitation –	C	03
Hydrological co	onsideration in land fill design – Ground water pollution.		
UNIT IV	WASTE STABILIZATION		9
Stabilization -	Solidification of wastes – Micro and macro encapsulation – Absorption,	T	1
	ecipitation – Detoxification – Mechanism of stabilization – Organic and inorganic		04
•	Utilization of solid waste for soil improvement.		
UNIT V	REMEDIATION OF CONTAMINATED SOILS		9
	itu remediation-Solidification, bio-remediation, incineration, soil washing, electro	T	
	eating, vetrification, bio-venting.	C	CO5
	TOTAL : 45 PE		ne.
_	TOTAL: 45 PE	KIU	טיי

- 1. Manoj Datta," Waste Disposal in Engineered landfills", Narosa Publishing House, 1997.
- 2. Manoj Datta, B.P. Parida, B.K. Guha, "Industrial Solid Waste Management and Landfilling Practice", Narosa Publishing House, 1999.

REFERENCE BOOKS

- 1. Hari D. Sharma and Krishna R. Reddy, "Geo-Environmental Engineering" –John Wiley and Sons, INC, USA, 2004.
- 2. Daniel B.E., "Geotechnical Practice for waste disposal", Chapman & Hall, London 1993.
- 3. Westlake, K, "Landfill Waste pollution and Control", Albion Publishing Ltd., England, 1995.
- 4. Wentz, C.A., "Hazardous Waste Management", McGraw Hill, Singapore, 1989.

COURSE OUTCOMES

- CO1 Understand basic knowledge of concepts and principles of Geo-environmental Engineering.
- CO2 | Select site for safe disposal of waste.

CO3	Aware	of soil	stabi	lizatio	n by ເ	utilizin	g soli	d was	te.						
CO4	Assess			minati	on in	the	soil a	nd to	seled	ct suita	able re	emedia	tion met	hods ba	sed on
CO5	Prepar	e the	suitab	le dis	oosal	syste	m for	partic	ular v	vaste.					
	I			N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO	S			
COs	PROGRAM OUTCOMES (POs) PROGRAM SPECIF OUTCOMES (PSO														
													OUTC	COMES (PSOS)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSOS)
CO1	PO1 2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 2	PO12			•
CO1		PO2		PO4 1 3	PO5 1 2	PO6 1 3		PO8 1 1		PO10 1	_	_	PSO1	PSO2	PSO3
	2	PO2 1 1 2	2	1	1	1	3	1	3	PO10 1 1	2	3	PSO1 3	PSO2 3	PSO3

CO5

CE1027	GROUND IMPROVEMENT TECHNIQUES	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
Student	s will be exposed to various problems associated with soil deposits a	nd	met	hods	to
evaluate	e them. The different techniques will be taught to them to improve the ch	ıara	cteri	stics	s of
difficult	t soils as well as design techniques required to implement various ground	d in	npro	vem	ent
method	s.				
UNIT I	PROBLEMATIC SOIL AND IMPROVEMENT TECHNIQUES				9
Role of ground	d improvement in foundation engineering - Methods of ground improve	eme	nt –		
Geotechnical p	roblems in alluvial, lateritic and black cotton soils - Selection of suitable	gro	und	С	01
improvement to	echniques based on soil conditions.				
UNIT II	DEWATERING				9
Dewatering Te	echniques - Well points – Vacuum and electroosmotic methods – S	eep	age		
analysis for tw	vo dimensional flow for fully and partially penetrated slots in homog	jene	ous	C	02
deposits – Des	ign for simple cases.				
UNIT III	INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS				9
In-situ densific	cation of cohesionless soils – Shallow as deep compaction – D	yna	amic		
compaction - \	Vibroflotation, Sand compaction piles and deep compaction. Consolidation	atio	n of		
cohesionless s	soils -Preloading with sand drains, and fabric drains, Stabilization of s	oft	clay	C	O 3
ground using s	tone columns and Lime piles-Installation techniques – Simple design - F	Rela	ative		
merits of above	e methods and their limitations.				
UNIT IV	EARTH REINFORCEMENT				9
Concept of re	einforcement - Types of reinforcement material - Reinforced earth	wa	ıll –		
Mechanism -	Simple design - Applications of reinforced earth; Functions of Geotes	xtile	s in	C	04
filtration, draina	age, separation, road works and containment applications.				
UNIT V	GROUTING TECHNIQUES				9
	s – Grouting equipment's and machinery – Injection methods – Grout mo	nito	ring	0	:05
-Stabilization v	vith cement, lime and chemicals – Stabilization of expansive soil.				
	TOTAL	: 45	PE	RIO	DS

- 1. Purushothama Raj. P, "Ground Improvement Techniques", Lakshmi Publications, 2nd Edition, 2016.
- 2. Koerner, R.M. "Construction and Geotechnical Methods in Foundation Engineering", McGraw Hill, 1994.
- 3. Nihar Ranjan Patra, "Ground Improvement Techniques", Vikas Publishing House, First Edition, 2012.
- 4. Mittal.S, "An Introduction to Ground Improvement Engineering", Medtech Publisher, First Edition, 2013.

REFERENCE BOOKS

- 1. Moseley, M.P., "Ground Improvement" Blockie Academic and Professional, 1992.
- 2. Moseley, M.P and Kirsch. K., 'Ground Improvement', Spon Press, Taylor and Francis Group, London, 2nd Edition, 2004.

- 3. Jones C.J.F.P. "Earth Reinforcement and Soil Structure", Thomas Telford Publishing, 1996.
- 4. Winterkorn, H.F. and Fang, H.Y. "Foundation Engineering Hand Book". Van Nostrand Reinhold, 1994.
- 5. Das, B.M., "Principles of Foundation Engineering" (seventh edition), Cengage learning, 2010.
- 6. Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2011.
- 7. Koerner, R.M., "Designing with Geosynthetics" (Sixth Edition), Xlibris Corporation, U.S.A, 2012.
- 8. Relevant IS Codes.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Gain knowledge on methods and selection of ground improvement techniques.
CO2	Acquire dewatering techniques and design for simple cases.
CO3	Get knowledge on in-situ treatment of cohesionless and cohesive soils.
CO4	Get knowledge on in-situ treatment of cohesionless and cohesive soils.
CO5	Get to know types of grouts and grouting technique.

MAPPING OF COs WITH POS AND PSOS

COs					PROGRAM SPECIFI OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	-	3	1	2	-	-	-	3	3	-	2
CO2	3	3	2	2	-	3	1	2	-	-	-	3	3	-	2
CO3	2	3	3	2	-	3	1	2	-	-	-	3	3	-	2
CO4	3	2	3	3	-	3	1	2	-	-	-	3	3	-	2
CO5	3	3	2	2	-	3	1	2	-	-	-	3	3	-	2

CE1028	SOIL DYNAMICS AND MACHINE FOUNDATIONS	L	Т	Р	С		
		3	0	0	3		
OBJECTIVES							
To unde	erstand the basics of dynamics – dynamic behaviour of soils – effects of	dyna	amic				
loads ar	nd the various design methods.						
UNIT I	THEORY OF VIBRATION				9		
Nature dynamic	c loads – Vibrations of single degree freedom system – Free vibrations	of sp	oring				
mass system	ns - Forced vibrations - Viscous damping - Transmissibility - Princ	ciple	s of	C	01		
vibration measu	uring instruments – Effect of Transient and Pulsating loads						
UNIT II	WAVE PROPAGATION				9		
Elastic waves in	n rods of infinite length – Longitudinal and Torsional – Effect of end con	ditio	ns –				
Longitudinal ar	nd torsional vibrations of rods of finite length – Wave Propagation in	infi	nite,				
homogeneous	isotropic and elastic medium - Wave propagation in elastic half space -	- Ty _l	pical	C	O2		
values of compression wave and shear wave velocity - Wave propagation due to Machine							
foundation – Su	urface wave – Typical values – Particle movements and velocity.						
UNIT III	DYNAMIC PROPERTIES OF SOILS				9		
Dynamic stres	s – Strain characteristics – Principles of measuring dynamic prop	ertie	es –				
Laboratory Tec	hniques – Field tests – Factors affecting dynamic properties – Typical	valu	es –	C	CO3		
Dynamic bearir	ng capacity – Dynamic earth pressure.						
UNIT IV	FOUNDATION FOR DIFFERENT TYPES OF MACHINES				9		
Types of mach	nines and foundation – General requirements – Modes of vibration o	f a	rigid				
foundation - M	ethod of analysis – Linear elastic weightless spring method – Elastic ha	alf sp	oace	_	04		
method - Ana	log Method - Design of block foundation - Special consideration fo	r ro	tary,	`	,04		
Impact type of i	machines – Codal Provisions.						
UNIT V	INFLUENCE OF VIBRATION AND REMEDIATION				9		
Mechanism of I	iquefaction – Influencing factors – Evaluation of Liquefaction potential b	ase	d on				
SPT-Force Iso	lation – Motion Isolation – Use of spring and damping materials – $^{f v}$	Vibra	ation		:05		
control of existi	ng machine foundation – Screening of vibration – Open trenches – Pile	Bar	riers	~	.55		
 Salient consti 	ruction aspects of machine Foundations.						
	TOTAL	_ : 4	5 PE	RIO	DS		

- Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt.Ltd. (Second Edition) 2006, (Reprint 2010), New Delhi-110002
- 2. Srinivasulu. P, and Vaidyanathan. C. V, "Handbook of Machine Foundations", Tata McGraw-Hill, 2007

REFERENCE BOOKS

- 1. Kamaswara Rao., "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998.
- 2. Kameswara Rao., "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003.
- 3. Moore, P.J., "Analysis and Design of Foundation for Vibration", Oxford and IBH, 2005
- 4. Steven L. Kramer, "Geotechnical Earthquake Engineering", Prentice Hall, 2014.

COURSE OUTCOMES

Upon	complet	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to							
CO1	Have t	he bas	sic kno	owled	ge ab	out th	e the	ory of	vibra	tion.					
CO2	Under	stand t	he dif	ferent	types	s of w	aves	and it	s beh	aviour.					
CO3	Have e	lave enough knowledge about various laboratory and field tests to determine													
CO4	Assess			minati	on in	the	soil a	nd to	seled	ct suita	able re	emedia	tion met	hods ba	sed on
CO5	Asses: vibration			s and	beha	viour	of so	il.					s based	on the n	ature of
				N	IAPP:	ING (OF CO)s WI	TH P	Os AN	D PSO	S			
				PRO	GRA	M OI	J TCO	MES	(POs)				PROGI	RAM SPI	ECIFIC
COs									(,				OUTO	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1	3	1	3	1	1	2	1	2	2
CO2	3	3	1	1	1	1	3	1	3	1	1	1	2	3	2
CO3	3	2	3	2	3	1	3	1	3	1	1	2	2	1	2
CO4	3	3	3	1	1	1	3	1	3	1	1	3	2	2	1
CO5	3	1	2	1	1	2	2	1	3	1	1	3	3	2	2

CE1029	ROCK MECHANICS	L	Т	Р	С				
		3	0	0	3				
OBJECTIVES									
❖ To imp	art knowledge on fundamentals of rock mechanics and its application ir	so	lving	sim	ıple				
problen	ns associated with rock slopes and underground openings.								
Studen	t gains the knowledge on the mechanics of rock and its applications	in u	ındeı	gro	und				
structui	es and rock slope stability analysis.								
UNIT I	CLASSIFICATION AND INDEX PROPERTIES OF ROCKS				9				
Geological clas	ssification – Index properties of rock systems – Classification of rock ma	sse	s for		:01				
engineering pu	rpose – Rock Mass Rating and Q System.				,01				
UNIT II ROCK STRENGTH AND FAILURE CRITERIA									
Modes of rock failure - Strength of rock - Laboratory measurement of shear, tensile and									
compressive s	trength. Stress - strain behaviour of rock under compression - Mohr -C	Coul	omb	C	02				
failure criteria	and empirical criteria.								
UNIT III	INITIAL STRESSES AND THEIR MEASUREMENTS				9				
Estimation of i	nitial stresses in rocks - influence of joints and their orientation in distrib	outio	n of		.1				
stresses - me	asurements of in-situ stresses – Hydraulic fracturing – Flat jack method	d — (Over	C	CO3				
coring method									
UNIT IV	APPLICATION OF ROCK MECHANICS IN ENGINEERING				9				
Simple engine	ering application – Underground openings – Rock slopes – Foundation	ons	and		•				
mining subside	ence.				04				
UNIT V	ROCK STABILISATION				9				
Introduction –	Rock support and Rock reinforcement – Principles – Support reaction of	curv	es -		:05				
Shotcreting.				'	,05				
	TOTAL	. : 4	5 PE	RIO	DS				

- 1. Goodman, P.E. "Introduction to Rock Mechanics", John Wiley and Sons, 1999.
- 2. Ramamurthy. T., "Engineering in Rocks for Slopes, Foundation and Tunnels: (Third Edition), PHI Learning Private Limited, New Delhi, 2014.

REFERENCE BOOKS

- 1. Brown, E.T. "Rock Characterization Testing and Monitoring". Pergaman Press 1991.
- 2. Arogyaswamy, R.N.P., Geotechnical Application in Civil Engineering", Oxford and IBH, 1991.
- 3. Hook E.and Bray J., Rock slope Engineering, Institute of Mining and Metallurgy", U.K.2004.
- 4. Brady, B.H.G. and Brown, E.T., Rock mechanics for underground mining (Third Edition), Kluwer Academic Publishers, Dordrecht, 2006.

COURSE OUTCOMES

CO1	Have the knowledge in characterizing and rating the rock mass.
CO2	Arrive at the behaviour of rock for the given project.
CO3	Calculate the insitu stresses of rock.
CO4	Design underground excavation, open excavation and sub-structures.

CO5	Design suitable support system under unstable condition.															
	MAPPING OF COs WITH POs AND PSOs															
COs	PROGRAM OUTCOMES (POs) OUTCOMES (PSO															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO3		
CO1	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3	
CO2	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3	
CO3	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3	
CO4	3	3	2	2	2	1	1	1	2	1	2	3	2 1 3			
CO5	3	3	2	2	2	1	1	1	2	1	2	3	2	2 1 3		

CE1030	COASTAL ENGINEERING	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
The ma	in purpose of coastal engineering is to protect harbors and improve navig	gatio	on.		
The stu	dents to the diverse topics as wave mechanics, wave climate, shoreline p	prot	ectic	n	
method	s and laboratory investigations using model studies.				
UNIT I	INTRODUCTION TO COASTAL ENGINEERING				9
Indian Scenario	o - Classification of Harbours. Introduction - wind and waves - Sea and S	wel	-		
	small amplitude wave theory - use of wave tables- Mechanics of water w	ave	s -	C	01
, , ,	ave theory, Introduction to Tsunami WAVE PROPERTIES AND ANALYSIS				
UNIT II				1	9
	vaves in shallow waters, Introduction to non-linear waves and their prop				
	allow waters - Wave Refraction, Diffraction and Shoaling -Hindcas				02
•	dels, wave shoaling; wave refraction; wave breaking; wave diffraction s. Short term wave analysis - wave spectra and its utilities - Long term				,02
	stics analysis of grouped wave data.	III V	vave		
UNIT III	TYPES AND WAVE TRANSFORMATION				9
Tide analysis a	and prediction, storm surge, seiches and seasonal fluctuations - Long tern	n w	ater		
•	ns – Wave shoaling; wave refraction; wave breaking; wave diffraction			C	CO3
UNIT IV	COASTAL DEFENSE			1	9
Field measure	ment; models, groins, sea walls, offshore breakwaters, artificial nouris	hme	ent -		04
planning of coa	ast protection works - Design of shore defense structures -Case studies.			'	,04
UNIT V	MODELING IN COASTAL ENGINEERING				9
Physical mode	ling in Coastal Engineering - Limitations and advantages - Role of	phy	sical		
•	astal engineering - Numerical modeling - Modeling aspects - limitations			- (05
•	public domain models, Tsunami mitigation measures – Introduction to	DF	PSIR		
Approach				<u> </u>	
	TOTAL	: 4	5 PE	RIC	DS

- 1. Mani J.S., Coastal Hydrodynamics. PHI Pvt.Ltd. New Delhi 2012.
- 2. Dean, R.G. and Dalrymple, R.A., Water wave mechanics for Engineers and Scientists, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994

REFERENCE BOOKS

- 1. Ippen, A.T., Estuary and Coastline Hydrodynamics, McGraw-Hill, Inc., New York, 1978.
- 2. Sorenson, R.M., Basic Coastal Engineering, A Wiley-Interscience Pub. New York, 1978.
- 3. Coastal Engineering Manual, Vol. I-VI, Coastal Engineering Research Centre, Dept. of the Army, US Army Corps of Engineers, Washington DC, 2006

COURSE OUTCOMES

CO1	Describe the problems associated with Indian coast. Apply Linear wave theory
COI	and use wave tables for solving the dispersion equation.
CO2	Distinguish between linear and non-linear wave theories. Solve problems on wave
002	transformations. Apply probability theory for wave analysis.
CO3	Types of waves, wave shoaling, diffraction, refraction

CO4	Model and design shore defense structures and describe the problems from reliability and risk
	perspective.
CO5	Compare and contrast physical and mathematical coastal models and critique the advantages
	and disadvantages between them.

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	-	-	-	-	-	2	-	-	-	-	3	3	1	1	
CO2	3	2	-	-	-	3	-	3	-	-	-	2	3	3	1	
CO3	3	3	2	-	2	2	2	2	2	2	2	2	2	3	3	
CO4	3	3	3	-	3	3	3	3	3	3	3	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3	

CE1031	COASTAL ZONE MANAGEMENT	L	T	P	C
<u> </u>		3	0	0	3
OBJECTIV					
	be able to "see" the features and components of the natural, engineering and	i hu	man		
•	ects of the coast, the function of component and relationship between them.				
	be able to interpretation and analysis of coastal issues to determine appropri	ate			
	roaches in coastal management.		101		
	be able to understand the need for coastal zone management and to develop	o an	ICIV	1	
plar UNIT I	COASTAL ZONE				_ (
	ne – Beach Profile – Surf Zone – Off Shore – Coastal Waters – Coastal sedi	mer	nts-	1	
	Wet Lands And Lagoons – Coastal dunes-Coastal Geomorphology.			C	01
UNIT II	COASTAL RESOURCES				(
Types and	functions of coastal and marine resources- Renewable and Non- Rei	new	able	;	
resources	- living marine resources and Nonliving marine resources-Marine mineral	s-pl	acer	· c	02
deposits-hy	drocarbon deposits-polymetallic nodules.				
UNIT III	COASTAL ECOSYSTEM				Ś
Marine eco	system: Mangroves- Sea grass -seaweeds - coral reef- Large marine ecosys	stem	1-		
Climate eff	ects on living marine resources- Biological monitoring of marine ecosystem-	Hun	nan	C	O
•	marine ecosystem.				
UNIT IV	COASTAL PROCESSES				(
	d Depositional Shore Features – Methods Of Protection – Littoral Currents –			C	04
	uifers – Sea Water Intrusion – Impact Of Sewage Disposal In Seas.				_
UNIT V	COASTAL REGULATIONS				(
	n- What is ICM- Developing an ICM framework- Principles-Goals-		_		
	- Coastal regulations for main land India - coastal regulations for	Isla	nds-	· C	O
introduction	to Environmental Law and policy.				
	TOTAL	. : 4	5 PE	RIO	DS
TEXT BOO	OKS				
1. N	CSCM straigies and guideline for National implementation of Integrated Coa	stal	zon	 e	
	anagement, 2013				
		_			
	amesh R and Purvaja R , E- learning moduleon ICZM for UNESCO-IHE, The	;			
	etherlands, 2006				
	CE BOOKS				
	nard Sylvester, "Coastal Engineering, Volume I And II", Elseiner Scientific				
	ilishing Co., 1999	at In			
	rivedi, S.N., Natarajan, R And Ramachandran, S.,"Coastal Zone Managemer nilnadu", Madras, 1991	וו ווו	i		
	OUTCOMES				
	letion of the course, students will be able to				
Des	cribe The Coastal Zone Regulations, Coastal Processes And to identify natu	ıral,			
CO1	ineering and human components on the coast	,			
	e to interpretation and analysis of coastal issues to determine appropriate				
	15				

	approa	aches i	n coa	stal m	nanag	emen	t and	able	to con	nmunio	cate ef	fective	ly in spe	ech	
	and w	ritings													
CO3		Able to learn about different ecosystem available in coastal zones and their mportance													
CO4	Able to	Able to learn about coastal erosion and accretions, impacts of sewage disposal													
CO5	Able to	unde	rstand	abou	ut coa	stal re	egulat	ions,	its lav	vs and	policie	es			
				N	IAPP	ING (OF CO	Os WI	TH P	Os AN	D PSO	s			
Cos	PROGRAM OUTCOMES (POs) PROGRAM SPECIF OUTCOMES (PSOs														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	2	2	2	-	3	-	2	-	3	2	-	3	3	3
								_		_		2	-		_
CO3	2	3	3	2	3	3	3	2	-	3	-	2	3	-	3
CO3	2	3	-	2	3	3	2	2	-	3	1	3	3	3	3

CE1032	GLOBAL CLIMATE CHANGE	L	T	Р	С
		3	0	0	3

OBJECTIVES

- ❖ To give students the various perspectives on climatic change and the actions societies have taken to address its potential and actual impacts
- ❖ To highlight that natural processes and human activities alter the composition of the ocean and atmosphere, both globally and regionally, that trigger climate change at different temporal and spatial scales
- ❖ To provide a basic conceptual understanding of the complexity of the climate system; and the observed and potential effects of anthropogenic-induced climate change on human and natural systems based on IPCC recommendations
- ❖ To enable understanding of the international and national responses to climate change and consider individual responsibility and future challenges

UNIT I	INTRODUCTION	9
Historical Ove	rview of Climate Change Science- Changes in Atmospheric Constituents and	•
Radiative Forc	ing - The Ice Ages: An Introduction - Determining Past Climates - Reconstructing	CO1
Past Climate C	Change Interannual to decadal variability- Observations: Atmospheric Surface	COI
and Climate Cl	nange	
UNIT II	OCEAN-ATMOSPHERE INTERACTIONS	9
Role of the oce	eans in climate -Introduction to ocean-atmosphere interactions - Global radiation	
balance -Ocea	n currents - Thermohaline circulation and deep water masses - Ocean heat	CO2
budgets a nd v	vater mass mixing - the cryosphere	
UNIT III	IMPACTS OF CLIMATE CHANGE	9
Global warmin	g - greenhouse effect - green house gases - impacts on physical systems -	
impacts on ed	cological systems - vulnerability of coast - climate change and biodiversity -	CO3
sectoral impac	ts - ocean acidification - carbon sequestration by ecological systems	
UNIT IV	ASSESSMENT OF CLIMATE CHANGE	9
The IPCC As	sessments -UNFCCC - global convention on climate change - protocols -	CO4
international ne	egotiations - Indian assessments - India's plan of action for climate change	CO4
UNIT V	ADAPTATION AND MITIGATION	9
Mitigating clim	ate change - blue carbon- geoengineering - renewable energy and other	•
alternate syst	ems - adaptation indigenous knowledge - sectoral adaptations - coastal	CO5
ecosystems - c	coastal communities - mainstreaming climate change into development practices	
	TOTAL : 45 PER	IODS

TEXT BOOKS

- 1. Climate Change The Science, Impacts and Solutions (2nd Edition) A. Barrie Pittock, CSIRO Publishing, 2009.
- 2. Fundamentals of weather and climate (2nd Edition) Robin McIlveen, Oxford University Press, 2009

REFERENCE BOOKS

- 1. Climate change Mitigation of Climate, IPCC, 2013.
- 2. Atmosphere Weather and Climate K Siddartha, Kisalaya Publications Pvt. Ltd, 2013
- 3. W. Neil Adger, Irene Lorenzoni and Karen L. O, Adapting to Climate Change: Thresholds, Values, Governance, Cambridge, 2009.

- 4. Vineet Kumar, Arjuna Srinidhi, Chandra Bhushan, Geetika Singh, Rising to the Call: Good Practices of Climate Change Adaptation in India, Centre For Science And Environment publisher, 2014.
- 5. Dan Gafta and John Akeroyd, Nature Conservation Concepts and Practice, Springer, 2006.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the science and basic of weather and climate
CO2	Student will attain the knowledge on natural and anthropogenic activities, which
002	accelerate the climate change
CO3	Acquire knowledge on various protocols and agreement that help to control and reduce
003	climate change impacts
CO4	Know the adaptive techniques to build the climate resilience society.
CO5	Gain awareness about the stress on natural based resources and to conserve it from
003	natural calamities

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)														AM SPECIFIC OMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-		
CO3	-	3	-	-	2	-	-	-	-	-	2	2	2	-	-		
CO4	-	-	3	2	2	3	3	-	-	-	2	-	2	2	3		
CO5	-	-	-	-	-	-	-	2	3	3	-	3	-	3	3		

CE1033	CLIMATE CHANGE AND VULNERABILITY ASSESSMENT	L	Т	Р	С
		3	0	0	3
OBJECTIVES					
To fami	liarize the methodologies of climate impacts and vulnerability assessme	nt or	1		
Natural	resources				
UNIT I	INTRODUCTION				9
Global, Region	al and Local climates, Ocean Circulation, weather parameters. Tropical	clim	ate,		:01
Monsoons and	their role in global climate change.			`	,01
UNIT II	NATIONAL ACTION PLAN ON CLIMATE CHANGE				9
National and S	tate Action Plan on Climate Change, Significance on Sustainable deve	elopr	nent		
of Natural reso	ources – National Water Mission, Sustainable Agriculture Mission, Gre	en l	ndia	. C	:02
Mission, Coast	al Conservation.				
UNIT III	CLIMATE SCENARIOS				9
Global and Re	gional Climate Scenarios – Representative Concentration Pathways (I	RCP	2.6,		
4.5,6.0 and 8.5	5), Global Circulation Model (GCM) - Statistical and Dynamical Downs	calir	ng of	· C	: O3
GCM – Region	al Climate Model (RCM).				
UNIT IV	IMPACTS AND VULNERABILITY ASSESSMENT - METHODOGLOG	ЭΥ			9
Definitions of R	tisk, Hazards, Exposure, Sensitivity and Vulnerability. Climate Risk Asse	essm	ent,		:04
IPCC Methodo	logy – Vulnerability indices.			'	,04
UNIT V	VALIDATION AND APPLICATION OF MODELS				9
Climate Project	tions and Validation- Uncertainty analysis - Bias Correction - Sect	oral	wise		:05
Case Studies in	n India.			'	,05
	TOTAL	L : 4	5 PE	RIO	DS

- 1.IPCC Fifth Assessment Report Impacts, Adaptation and Vulnerability, Cambridge University Press, 2014.
- 2.Neelin David J, "Climate Change and Climate Modelling", Cambridge University Press, 2011.

REFERENCE BOOKS

- 1. Thomas Stocker, "Introduction to Climate Modelling", Advances in Geophysical and Environmental Mechanics and Mathematics. Springer Publication, 2011.
- 2. India's National Action Plan on Climate Change (NAPCC), Government of India, 2018
- 3. Michele Companion and Miriam S. Chaiken, Responses to Disasters and Climate Change: Understanding Vulnerability and Fostering Resilience, CRC Press, 2017.
- 4. Climate Change The Science, Impacts and Solutions (2nd Edition) A. Barrie Pittock, CSIRO Publishing, 2009.

COURSE OUTCOMES

CO1	Understand the basic and concept behind the climate change
CO2	Know the global and national policies to combat the climate change impacts
CO3	Understand the basics of climate modelling and envisage the climate change impact based on different emission scenario

CO4	Able to	asses	ss the	risk a	and vu	ılnera	bility (on diff	ferent	sector	s due	to clim	ate chan	ge		
CO5	Know	Know the validation of climate models and correlate the climate related case studies														
	MAPPING OF COs WITH POs AND PSOs															
Cos	PROGRAM OUTCOMES (POs)											RAM SPECIFIC COMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	-	3	-	2	-	-	-	-	-	2	3	-	2	2	3	
CO3	2	-	-	2	3	-	-	-	-	-	-	3	-	-	-	

CO5

OME103	ENERGY CONSERVATION IN THERMAL AND ELECTRICAL UTILITIES	L	T	Р	С
		3	0	0	3
OBJECT	VES				
*	Understand and analyse the energy data of industries				
*	Carryout energy accounting and balancing				
*	Conduct energy audit and suggest methodologies for energy savings and				
*	Utilize the available resources in optimal ways				
UNIT I	INTRODUCTION				9
Energy 8	Power scenario of the World; Present National Energy consumption	Data	_		
Environm	ental aspects associated with energy utilization - Energy Auditing: Need,	Тур	es,	СО	1
Methodol	ogy and Barriers. Role of Energy Managers. Instruments for energy auditing.				
UNIT II	THERMAL SYSTEMS				9
Stoichion	netry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation	on a	ınd		
encon me	easures. Steam: Distribution & Usage: Steam Traps, Condensate Recovery	, Fla	ash	СО	2
Steam Ut	ilization, Insulators & Refractories				
UNIT III	ELECTRICAL SYSTEMS				9
Compone	ents of EB billing – HT and LT supply, Transformers, Cable Sizing, Con-	cept	of		
Capacitor	s, Power Factor Improvement, Harmonics, Electric Motors - Motor Ef	ficier	псу	00	2
Computat	tion, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, E	ffica	су,	СО	3
LED Ligh	ting and scope of Encon in Illumination.				
UNIT IV	ENERGY CONSERVATION IN MAJOR UTILITIES				9
Pumps, F	Tans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning S	yste	ms	-	_
- Cooling	Towers – D.G. sets			СО	4
UNIT V	ECONOMICS				9
Energy E	conomics – Discount Rate, Payback Period, Internal Rate of Return, Net I	Prese	ent	00	_
Value, Lif	e Cycle Costing –ESCO concept			СО	5
	TOTAL	: 45	PEF	RIOD	S

1. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com,a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCE BOOKS

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

COURSE OUTCOMES

Upon completion of this course, the students can able to analyse the energy data of industries.

- Can carryout energy accounting and balancing
- Can suggest methodologies for energy savings

	Ability to learn the concept of energy scenario, energy consumption and instruments for energy
CO1	auditing.

- CO2 | Ability to carry out energy accounting and balancing in electrical system
- CO3 Ability to carry out energy accounting and balancing in thermal system system
- CO4 Ability to suggest methodologies for energy savings in major utilities
- CO5 To understand the economics in energy saving

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	1	1	1	2	2	3	1	3
CO2	3	3	3	3	2	3	3	1	1	1	3	2	3	1	3
CO3	3	3	3	3	3	2	3	1	1	1	3	2	3	1	3
CO4	3	3	3	3	3	2	3	1	1	1	2	2	3	1	3
CO5	3	3	3	3	2	3	3	1	1	1	3	2	3	1	3

OCH 103	ENVIRONMENT AND AGRICULTURE L T P								
	3 0								
OBJECTIVES									
To emphasize on the importance of environment and agriculture on changing global scena									
	emerging issues connected to it								
UNIT I	ENVIRONMENTAL CONCERNS				9				
Environmental	basis for agriculture and food - Land use and landscape changes -	– W	/ater						
quality issues -	- Changing social structure and economic focus - Globalization and its	imp	acts	C	01				
 Agro ecosyst 	ems.								
UNIT II	ENVIRONMENTAL IMPACTS				9				
Irrigation deve	lopment and watersheds - mechanized agriculture and soil cover im	pac	ts -	T					
Erosion and	problems of deposition in irrigation systems – Agricultural draina	ıge	and	C	02				
downstream im	npacts – Agriculture versus urban impacts								
UNIT III	CLIMATE CHANGE				9				
Global warming	g and changing environment – Ecosystem changes – Changing blue-gre	en-	grey	T	03				
water cycles – Water scarcity and water shortages – Desertification.									
UNIT IV	INIT IV ECOLOGICAL DIVERSITY AND AGRICULTURE				9				
Ecological dive	ersity, wild life and agriculture - GM crops and their impacts on the envi	ronr	nent						
- Insects and agriculture - Pollination crisis - Ecological farming principles - Forest									
fragmentation and agriculture - Agricultural biotechnology concerns.									
UNIT V	EMERGING ISSUES				9				
Global environmental governance – alternate culture systems – Mega farms and vertical farms									
- Virtual water trade and its impacts on local environment - Agricultural environment policies									
and its impacts – Sustainable agriculture.									
TOTAL : 45 PERIO									
<u> </u>									

- 1. M.Lakshmi Narasaiah, Environment and Agriculture, Discovery Pub. House, 2006.
- 2. Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005

REFERENCE BOOKS

- 1. T.C. Byerly, Environment and Agriculture, United States. Dept. of Agriculture. Economic Research Service, 2006.
- 2. Robert D. Havener, Steven A. Breth, Environment and agriculture: rethinking development issues for the 21st century: proceedings of a symposium, Winrock International Institute for Agricultural Development, 1994
- 3. Environment and agriculture: environmental problems affecting agriculture in the Asia and Pacific region; World Food Day Symposium, Bangkok, Thailand. 1989

COURSE OUTCOMES

CO1	To gain knowledge on the issues of environmental concerns						
CO2	To understand the environmental impacts on agriculture and watershed.						
CO3	To gain knowledge on the basic concepts of Climate Change, Water scarcity and water						

	knowledge
CO4	To understand the ecosystem, ecological diversity
CO5	To understand the global and local emerging issues on agriculture and biotechnology
	MAPPING OF COs WITH POs AND PSOs

Cos		PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO1 PSO2 PSO		
CO1	3	1	2	1	-	2	2	1	-	-	1	2	2	2	2	
CO2	2	1	2	1	2	2	2	1	-	-	1	2	2	2	2	
CO3	3	3	3	1	-	3	3	1	-	-	1	3	3	3	3	
CO4	2	1	2	1	-	2	2	1	-	-	1	2	2	2	2	
CO5	3	1	2	1	-	2	2	1	-	-	1	2	2	2	3	

	(Common to MECH, ECE &CIVIL) 3	0)	0	3
OBJECTIV	ES CONTRACTOR OF THE PROPERTY				
∻ Тор	et exposure on solar radiation and its environmental impact to power.				
❖ Tok	now about the various collectors used for storing solar energy.				
❖ To k	now about the various applications in solar energy.				
❖ To le	earn about the wind energy and biomass and its economic aspects.				
❖ To k	now about geothermal energy with other energy sources				
UNIT I	BASICS OF SOLAR RADIATION				9
Environmer	ntal aspects of energy utilization- importance of renewable energy sources - p	hysi	cs		
of the sun-t	he solar constant, extra-terrestrial and terrestrial solar radiation, solar radiat	ion (on	С	01
titled surfac	e. Instruments for measuring solar radiation and sun shine - solar radiation da	ta.			
UNIT II	SOLAR ENERGY COLLECTORS				9
Non-Conce	ntrating and concentrating collectors-classification of concentrating and	no	n-		
concentratir	ng collectors- orientation and thermal analysis- advanced collectors.			C	02
UNIT III	SOLAR ENERGY STORAGE AND APPLICATIONS				9
Storage me	thods- Sensible, latent heat and stratified storage, solar ponds. Solar Application	ation	าร-	_	
solar heatin	g/cooling technique, solar distillation and drying. photovoltaic energy conversi	on.		C	O3
UNIT IV	WIND ENERGY AND BIOMASS				9
Sources ar	d potentials- horizontal and vertical axis windmills- performance characte	ristic	cs-		
Types of w	rind Turbine generators- Betz criteria. BIO-MASS: Principles of Bio-Conve	ersio	n-		
Anaerobic/a	erobic digestion- types of Bio-gas digesters- gas yield- combustion character	risti	cs	C	04
of bio-gas-	utilization for cooking.				
UNIT V	GEOTHERMAL AND OCEAN ENERGY				9
Geotherma	Resources- types of wells- methods of harnessing the energy- potential in	Ind	ia.		
OCEAN EN	NERGY: OTEC- Principles utilization- setting of OTEC plants- thermody	nam	nic	_	~-
cycles. Tida	al and wave energy: Potential and conversion techniques- mini-hydel power	plar	nts	C	O5
and their ed	onomics.				
	TOTAL :	45 F	PEF	RIO	DS

RENEWABLE ENERGY SOURCES

C

TEXT BOOKS

OEE102

- 1. Rai G.D, "Non-Conventional Energy Sources", Khanna Publishers, 2011.
- 2. Twidell&Wier, "Renewable Energy Resources", CRC Press (Taylor & Francis), 2011

REFERENCE BOOKS

- 1. Tiwari and Ghosal, "Renewable energy resources", Narosa Publishing House, 2007.
- 2. Ramesh R & Kumar K.U , "Renewable Energy Technologies", Narosa Publishing House, 2004.
- 3. Mittal K M, "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, New Delhi, 2003.
- 4. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", P.H.I, New Delhi, 2010.

COUR	SE OU	тсом	ES												
Upon	comple	etion o	f the	cours	se, st	udent	s will	l be a	ble to)					
CO1	Ability	Ability to understand the physics of solar radiation and possible energy conversion.													
CO2	Ability	Ability to understand the operation of various solar energy collectors.													
CO3	Ability	to lea	rn the	meth	odolo	gies c	of stor	ing so	olar er	nergy.					
CO4	Acquir	e Kno	wledg	e in w	ind a	nd bio	mass	ener	gy co	nversio	on tech	nique	S.		
CO5	Acquir	e Kno	wledg	e in g	eothe	rmal	and o	cean	energ	y conv	ersion	techni	ques.		
				М	APPI	NG O	F CO	s WIT	TH PC	s ANI) PSO	S			
												•			
				PRO	GBA	МОЦ	ITCOL	MES	(POs)				PROGI	RAM SP	ECIFIC
COs				PRO	GRA	M OU	TCOI	MES ((POs)					RAM SP	
COs	PO1	PO2	PO3	PRO	GRA PO5	M OU	PO7	MES ((POs)	PO10	PO11	PO12			
COs	P01 3	PO2	PO3	Т	Т	T	Τ	· · · · · ·	, ,	Т			OUTC	OMES (PSOs)
				PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	OUTC PSO1	OMES (I	PSOs)
CO1	3	1	1	PO4	PO5	P06	PO7	P08	PO9	PO10	PO11	PO12 3	OUTC PSO1	OMES (I	PSOs) PSO3
CO1	3	1 3	1 3	PO4 1 3	PO5 1 3	P06 3 3	P07 3 3	P08 3 3	PO9 1 3	PO10 1	PO11 1 3	PO12 3 3	OUTC PS01 1 3	OMES (I	PSOs) PSO3 1 3

OBJECTIVES ↑ To understand the concepts of measurement technology. ↑ To learn the various sensors used to measure various physical parameters. ↑ To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development UNIT I INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS Basics of Measurement — Classification of errors — Error analysis — Static and dynamic characteristics of transducers — Performance measures of sensors — Classification of sensors — Sensor calibration techniques — Sensor Output Signal Types UNIT II MOTION, PROXIMITY AND RANGING SENSORS White III MOTION, PROXIMITY AND RANGING SENSORS Motion Sensors — Potentiometers, Resolver, Encoders — Optical, Magnetic, Inductive, Capacitive, LVDT — RVDT — Synchro — Microsyn, Accelerometer.,— GPS, Bluetooth, Range Sensors — RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors — types, principle, requirement and advantages: Magneto resistive — Hall Effect — Current sensor Heading Sensors — Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR — Fiber optic sensors — Pressure — Diaphragm, Bellows, Piezoelectric — Tactile sensors, Temperature — IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors — flow and level measurement, Radiation Sensors — Introduction to Smart Sensors — Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification — Filtering — Sample and Hold circuits — Data Acquisition: Single channel and Multi channel data acquisition — Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing , Structural health monitoring	OEI101	SENSORS AND TRANSDUCERS	L	T	Р	С				
 ★ To understand the concepts of measurement technology. ★ To learn the various sensors used to measure various physical parameters. ★ To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development UNIT I INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types UNIT II MOTION, PROXIMITY AND RANGING SENSORS Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors – types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitor			3	0	0	3				
* To learn the various sensors used to measure various physical parameters. * To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development UNIT I INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS Basics of Measurement — Classification of errors — Error analysis — Static and dynamic characteristics of transducers — Performance measures of sensors — Classification of sensors — Sensor calibration techniques — Sensor Output Signal Types UNIT II MOTION, PROXIMITY AND RANGING SENSORS Motion Sensors — Potentiometers, Resolver, Encoders — Optical, Magnetic, Inductive, Capacitive, LVDT — RVDT — Synchro — Microsyn, Accelerometer.,— GPS, Bluetooth, Range Sensors — RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors — types, principle, requirement and advantages: Magneto resistive — Hall Effect — Current sensor Heading Sensors — Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR — Fiber optic sensors — Pressure — Diaphragm, Bellows, Piezoelectric — Tactile sensors, Temperature — IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors — flow and level measurement, Radiation Sensors — Introduction to Smart Sensors — Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification — Filtering — Sample and Hold circuits — Data Acquisition: Single channel and multi channel data acquisition — Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing , Structural health monitoring	OBJECTIVES									
* To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development UNIT INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS 9	❖ To under	erstand the concepts of measurement technology.								
UNIT I INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types UNIT II MOTION, PROXIMITY AND RANGING SENSORS Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors – types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	To lear	the various sensors used to measure various physical parameters.								
Basics of Measurement - Classification of errors - Error analysis - Static and dynamic characteristics of transducers - Performance measures of sensors - Classification of sensors - Sensor calibration techniques - Sensor Output Signal Types WINIT II	❖ To lear	n the fundamentals of signal conditioning, data acquisition and commun	icati	on sy	/ste	ms				
Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types UNIT II MOTION, PROXIMITY AND RANGING SENSORS Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors – types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Structural health monitoring	used in	mechatronics system development								
characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types DINIT II	UNIT I	INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS				9				
Sensor calibration techniques – Sensor Output Signal Types	Basics of Mea	asurement - Classification of errors - Error analysis - Static and	dyna	amic						
Motion Sensors - Potentiometers, Resolver, Encoders - Optical, Magnetic, Inductive, Capacitive, LVDT - RVDT - Synchro - Microsyn, Accelerometer., GPS, Bluetooth, Range Sensors - RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III	characteristics	of transducers - Performance measures of sensors - Classification of se	ensc	ors –	С	01				
Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors – types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Sensor calibrat	ion techniques – Sensor Output Signal Types								
Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors – types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	UNIT II MOTION, PROXIMITY AND RANGING SENSORS									
Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Motion Senso	rs – Potentiometers, Resolver, Encoders – Optical, Magnetic, Ir	nduc	tive,						
UNIT III FORCE, MAGNETIC AND HEADING SENSORS Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Capacitive, LV	DT - RVDT - Synchro - Microsyn, Accelerometer.,- GPS, Bluetooth	, Ra	ange	С	02				
Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. WNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Sensors – RF I	peacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDA	AR).						
Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS 9	UNIT III	FORCE, MAGNETIC AND HEADING SENSORS				9				
Inclinometers. UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Strain Gage, I	Load Cell, Magnetic Sensors -types, principle, requirement and adv	anta	ges:						
UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Magneto resist	ive – Hall Effect – Current sensor Heading Sensors – Compass, Gy	rosc	ope,	С	O3				
Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS 9 Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Inclinometers.									
Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS 9 Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	UNIT IV	OPTICAL, PRESSURE AND TEMPERATURE SENSORS				9				
RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors – Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring CO4 CO4 CO5	Photo conduct	ve cell, photo voltaic, Photo resistive, LDR - Fiber optic sensors - Pre	essu	re –						
Introduction to Smart Sensors – Film (Thin and thick film) sensor, MEMS & Nano mechanical Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS 9 Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Diaphragm, Be	ellows, Piezoelectric – Tactile sensors, Temperature – IC Sensor, The	ermi	stor,						
Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring CO5	RTD, Thermoo	ouple. Acoustic Sensors – flow and level measurement, Radiation Se	enso	rs –	С	04				
UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS 9 Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Introduction to Smart Sensors - Film (Thin and thick film) sensor, MEMS & Nano mechanical									
Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	Sensors, LASER sensors, Environmental (Air and water quality) monitoring sensors									
multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances ,Manufacturing , Structural health monitoring	UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS									
appliances ,Manufacturing , Structural health monitoring	Amplification -	Filtering - Sample and Hold circuits - Data Acquisition: Single char	nnel	and						
	multi channel	data acquisition - Data logging - applications - Automobile, Aerospace	э, Н	ome	С	O 5				
TOTAL : 45 PERIODS	appliances ,Ma	nufacturing , Structural health monitoring								
		TOTAL	. : 4	5 PE	RIO	DS				

- 1. Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2. Sawhney A K and Puneet Sawhney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co, New Delhi, 2013.

REFERENCE BOOKS

- 1. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.
- 2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.
- 3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

COURSE OUTCOMES

CO1	Expertise in various calibration techniques and signal types for sensors.
CO2	Apply the proximity and ranging sensors in the automotive and mechatronics applications.
CO3	Understand the principles of various magnetic and heading sensors.
CO4	Understand the functioning of optical, pressure, temperature and smart sensors.
CO5	Implement the DAQ systems with different sensors for real time applications.
-	

MAPPING OF COs WITH POS AND PSOS

Cos		PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO1 PSO2 PSO		
CO1	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1	
CO2	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1	
CO3	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1	
CO4	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1	
CO5	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1	

OME107	VIBRATION AND NOISE CONTROL	L	T	Р	С
		3	0	0	3
OBJECTIVES					
To study th	e basics, sources and its control techniques of vibration				
•	e basics, sources and its control techniques of noise				
•	e sources of vibration and noise in automobiles				
· ·	vibration and noise in automotive components				_
UNIT I	BASICS OF VIBRATION				9
vibration, linea harmonic force	elassification of vibration: free and forced vibration, undamped and rand non-linear vibration, response of damped and undamped systeme, analysis of single degree and two degree of freedom systems, rmination of natural frequencies.	ns u	nder	С	01
UNIT II	BASICS OF NOISE				9
and averaging	mplitude, frequency, wavelength and sound pressure level, addition, suldecibel levels, noise dose level, legislation, measurement and analysis environment, equipment, frequency analysis, tracking analysis, sound	of no	oise,	C	02
UNIT III	AUTOMOTIVE NOISE SOURCES				9
Noise Characte	eristics of engines, engine overall noise levels, assessment of combustic	n no	oise,		
assessment of	f mechanical noise, engine radiated noise, intake and exhaust noise	, en	gine	С	O 3
,	tributed noise, transmission noise, aerodynamic noise, tire noise, brake r	noise	€.		
UNIT IV	CONTROL TECHNIQUES				9
Vibration isola	ation, tuned absorbers, un-tuned viscous dampers, damping trea	atme	ents,		
	namic forces generated by IC engines, engine isolation, crank shaft c	damp	oing,	С	04
,	of the mass elastic model shock absorbers.				
UNIT V	SOURCE OF NOISE AND CONTROL				9
palliative treatr	ontrol of engine noise, combustion noise, mechanical noise, predictive aments and enclosures, automotive noise control principles, sound in encabsorption, sound transmission through barriers.				O5
	TOTAL	_ : 4	5 PE	RIO	DS

- 1. Singiresu S.Rao, "Mechanical Vibrations", 5th Edition, Pearson Education, 2010
- 2. David Bies and Colin Hansen, "Engineering Noise Control Theory and Practice",4th Edition, E and FN Spon, Taylore & Francise e-Library,2009

REFERENCE BOOKS

- 1. Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007
- 2. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "Theory of Vibration with Application", 5th Edition Pearson Education, 2011
- 3. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996
- 4. Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International,1999.
- 5. Julian Happian-Smith "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, 2004
- 6. Rao, J.S and Gupta, K., "Introductory course on Theory and Practice of Mechanical Vibration", 2nd Edition, New Age International Publications, 2010
- 7. Shabana. A.A., "Theory of vibrations An introduction", 2nd Edition, Springer,2010
- 8. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009

9.	John Fenton, "Handbook of Automotive body Construction and Design Analysis – Professional							
Engine	Engineering Publishing,1998							
COUR	COURSE OUTCOMES							
Upon	completion of the course, students will be able to							
CO1	To understand the basics, different types and source of vibration							
CO2	To understand the basics, different types and source of noise							
CO3	To understand and analyze the various sources of automotive noise							
CO4	To understand the various control techniques of vibration							
CO5	To understand the sources and control techniques of automotive noise							

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO4	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3

OCH104	TEXTILE EFFLUENT TREATMENTS	Г	T	Р	С
		3	0	0	3
OBJECTIVES					
To und	erstand the functions of the basic components of a Robot.				
To stud	ly the use of various types of End of Effectors and Sensors				
To impa	art knowledge in Robot Kinematics and Programming				
To lear	n Robot safety issues and economics.				
UNIT I	CHARACTERISTICS OF EFFLUENTS				9
Constituents of	f water and their effect on textile wet processing, Effluent discharge sta	and	ards		
for inland surfa	ace water public sewers, on land for irrigation, marine coastal areas and	drin	king	C	01
water paramet	ers, Quality requirements of water for cotton and synthetic Textile proces	sing			
UNIT II	PRIMARY TREATMENT			1	9
Characteristics	and treatment of cotton, synthetics and wool processing effluents, Redu	uctic	n of		,1
pollution load	, Primary treatment methods - screening, sedimentatation, equa	ılisa	tion,	c	02
	coagulation and flocculation				_
UNIT III	SECONDARY TREATMENT			<u> </u>	9
Secondary trea	atment methods - Trickling filtration, Activated sludge process, aerated I	ago	ons,		
secondary sed	imentation, oxidation ponds, Anaerobic Digestion, sludge disposal.				O3
UNIT IV	TERTIARY TREATMENT				9
Tertiary treatm	nent – Evaporation (solar and steam), Advanced oxidation system, Me	mbi	rane		
•	MF, UF, NF & RO) ,Reverse osmosis, ion exchange and activated				04
•	ality parameters at entry and exit of RO.				
UNIT V	AIR QUALITY MANAGEMENT				9
Air Pollution	- Properties of air pollutants, control of air pollutants – Air pollution	СО	ntrol		
equipment, A	mbient air quality standards. Noise pollution – Types of noise -	- N	oise	C	05
measurement	and – Control of noise pollution.				
	TOTAL	: 4	5 PE	RIC	DS

- 1. Rao,C.S., "Environment Pollution control Engineering", New age International Ltd. and Publishers, N.Delhi, 2004.
- 2. Reife, A., and Freeman, H.S., (Ed)., "Environmental chemistry of dyes and pigment", Wiley., London, 2000, ISBN: 047158276.

REFERENCE BOOKS

- 1. Horrockks, A.R (Ed)., "Ecotextiles'98: Sustainable development", The Text.Inst., Manchester 1999, ISBN: 1855732426.
- 2. Modak.P., "The textile industry and the environment", UNEP:HMSO, Blackwells, Leeds, 2003, ISBN: 9280713671

COURSE OUTCOMES

CO1	Understand the characteristics of water and effluent discharge standards
CO2	Understand the primary treatment process involved in textile industry

CO3	Unders	Understand the different treatment processes involved in waste water treatment														
CO4	Perfori	Perform the research and development to produce zero discharge effluents														
CO5	Under	Understand the textile processing related causes for pollution														
				M	APPI	NG O	F CO	s WI7	ТН РС	s ANI) PSO	S				
COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1 3 1 0 3 3 0 2 0 3 2 1 2 2 2								2							
		'	0		3	~		U	3	2	1	2	2	2		
CO2	3	1	0	3	3	0	2	0	3	2	1	2	2	2	2	
CO2	3	1 1	Ů	_	_	Ŭ	_	Ŭ		_	•	_		_	_	
		1	0	3	3	0	2	0	3	2	1	2	2	2	2	

OEI102	ROBOTICS	L	T	Р	С	
OD IECTIVES		3	0	0	3	
OBJECTIVES * To impo	rt awareness about the pollution created by different stages of wet proce	seci	o a			
•	rt awareness about the pollution created by different stages of wet proce iarize the students about the importance of water and its analysis	35511	ıy			
	ple the students about the importance of water and its analysis	nte 4	and	vari	OLIC	
	nts carried out	113 (and	vaii	Jus	
UNIT I	FUNDAMENTALS OF ROBOT				9	
Robot - Defini	tion - Robot Anatomy - Co ordinate Systems, Work Envelope Typ	oes	and			
	Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pa				:01	
Robot Parts and	their Functions-Need for Robots-Different Applications.					
UNIT II	ROBOT DRIVE SYSTEMS AND END EFFECTORS				9	
Pneumatic Driv	ves-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo	Мо	tors,		1	
Stepper Motors	, A.C. Servo Motors-Salient Features, Applications and Comparison of	all th	nese			
Drives, End E	ffectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- G	Sripp	oers,	C	02	
Magnetic Gripp	ers, Vacuum Grippers; Two Fingered and Three Fingered Grippers;	Inte	ernal			
Grippers and External Grippers; Selection and Design Considerations.						
UNIT III	SENSORS AND MACHINE VISION				9	
Requirements	of a sensor, Principles and Applications of the following types of	sens	sors-		1	
Position senso	rs - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pr	eun	natio	;		
Position Sensor	rs, Range Sensors Triangulations Principles, Structured, Lighting Ap	opro	ach,			
Time of Flight	Range Finders, Laser Range Meters, Touch Sensors ,binary Sensors.	, An	alog			
	Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber,		_	-	O 3	
•	mage Data- Signal Conversion, Image Storage, Lighting Techniques		_			
•	nd Analysis-Data Reduction, Segmentation, Feature Extraction,		•			
-	ther Algorithms, Applications- Inspection, Identification, Visual Serv	ing	and			
Navigation.						
UNIT IV	ROBOT KINEMATICS AND ROBOT PROGRAMMING				9	
	atics, Inverse Kinematics and Difference; Forward Kinematics and					
	manipulators with Two, Three Degrees of Freedom (in 2 Dimension	•				
•	edom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dy				04	
•	erator, Manipulator Mechanism Design-Derivations and problems. Lead		_			
Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.						
<u> </u>					T _	
UNIT V	IMPLEMENTATION AND ROBOT ECONOMICS			1	9	
•	ded Vehicle), AGV (Automatic Guided Vehicle); Implementation of R					
	ous Steps; Safety Considerations for Robot Operations, Hazards of	ot ro	opot,	C	O 5	
Economic Analy	sis of Robots- Payback, EUAC, ROI Method.					
	TOTAL	. : 4	5 PE	RIO	DS	

1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integrated Approach", Prentice Hall, 2003.

2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCE BOOKS

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
- 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
- 4. Fu.K.S.,Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
- 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To learn concepts of Robotic system, its components and instrumentation and control related to
COT	robotics.
CO2	To improve skills on hardware drives and interfacing aspects.
CO3	To enhance basics of different sensors and machine vision interaction.
CO4	To develop student's skills in performing kinematics analysis of robot systems.
CO5	To provide the student with some knowledge and skills associated with robot economics
003	control.

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIF					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO1 PSO2 PSO3				
CO1	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1			
CO2	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1			
CO3	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1			
CO4	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1			
CO5	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1			

OME104	INDUSTRIAL SAFETY ENGINEERING	L	Т	Р	С			
		3	0	0	3			
OBJECTIVES:					•			
• To imp	part knowledge on safety engineering fundamentals and safety managem	nent	prad	ctice	S.			
UNIT I	INTRODUCTION				9			
Evolution of modern safety concepts - Fire prevention - Mechanical hazards - Boilers,								
Pressure vessels, Electrical Exposure.								
UNIT II CHEMICAL HAZARDS								
Chemical exposure - Toxic materials - Ionizing Radiation and Non-ionizing Radiation -								
Industrial Hygie	ene – Industrial Toxicology.				02			
UNIT III	ENVIRONMENTAL CONTROL				9			
Industrial Hea	lth Hazards – Environmental Control – Industrial Noise - Noise me	easu	ıring		:03			
instruments, C	ontrol of Noise, Vibration, - Personal Protection.				.03			
UNIT IV	HAZARD ANALYSIS				9			
System Safety	Analysis -Techniques - Fault Tree Analysis (FTA), Failure Modes and	l Eff	ects		04			
Analysis (FME	A), HAZOP analysis and Risk Assessment				-04			
UNIT V SAFETY REGULATIONS								
Explosions - I	Disaster management – catastrophe control, hazard control ,Safety ed	duca	ation		:05			
and training - F	Factories Act, Safety regulations Product safety – case studies.				.03			
TOTAL : 45 PERIOD								

CO1

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003.

REFERENCE BOOKS

1. Safety Manual, "EDEL Engineering Consultancy", 2000.

3

3

3

2. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005.

COUF	COURSE OUTCOMES														
Upon	Upon completion of the course, students will be able to														
CO1	under	understand the basic safety concepts in Industrial boilers, pressure vessels													
	under	stand t	he ha	zardo	us eff	ects c	ause	d and	preve	ention r	method	ds of cl	nemicals	used in	
CO2	indust	ry													
CO3	under	stand t	he en	vironn	nenta	l mea	sures	and o	contro	ls towa	ards sa	fety			
CO4	under	stand t	he an	alysis	of sa	fety p	reven	tions	and h	azards	in ind	ustry			
CO5	under	stand t	he sat	ety re	gulati	ons a	nd sa	fety n	nanag	gement					
	•			M	APPI	NG O	F CO	s WI7	ГН РС)s ANI) PSO	S			
				DD.	OGRA	МО	ITCO	MES	(DOc	`			PROG	RAM SP	ECIFIC
COs	,			FKC	JGKA	IVI OC	,,,,,	IVIES	(FUS	,			OUTC	OMES (PSOs)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3													
			1												

2

2

3

3

3

3

CO2	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3

OCS101	INTRODUCTION TO C PROGRAMMING	L	Т	Р	С
		3	0	0	3

OBJECTIVES

- ❖ To understand the basic concepts in C Programming Language.
- To understand Input and Output Statements.
- ❖ To enhance analyzing and problem solving skills and use the same for writing programs in C.
- ❖ To familiarize the basic syntax in arrays and pointers
- ❖ To provide exposure to problem-solving through programming

UNIT I	INTRODUCTORY CONCEPTS & C FUNDAMENTALS	9
Programming I Characteristics	Computers - Computer Characteristics - Modes of Operation - Types of Languages - Introduction to C - Some Simple C Programs - Desirable Program - The C Character Set - Identifiers and Keywords - Data Types - Constants - Arrays - Declarations - Expressions - Statements - Symbolic Constants.	CO1
UNIT II	OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS	9
Operators - The and puts Fund Statement - d	erators - Unary Operators - Relational and Logical Operators - Assignment the Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets extions - Preliminaries - Branching: The if else Statement - Looping: The while to while Statement - for Statement - Nested Control Structures - The switch the break Statement - The continue Statement - The Comma Operator - The goto	CO2
UNIT III	FUNCTIONS & PROGRAM STRUCTURE	9
Function - Re	nction - Accessing a Function - Function Prototypes - Passing Arguments to a cursion - Storage Classes - Automatic Variables - External (Global) Variables - s - Multifile Programs - More About Library Functions	СОЗ
UNIT IV	ARRAYS & POINTERS	9
Arrays - Array Functions - Po	rray - Processing an Array - Passing Arrays to Functions - Multidimensional vs and Strings - Fundamentals - Pointer Declarations - Passing Pointers to binters and One-Dimensional Arrays - Dynamic Memory Allocation - Operations Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions to s	CO4
UNIT V	STRUCTURES, UNIONS & DATA FILES	9
and Pointers -	octure - Processing a Structure - User-Defined Data Types (typedef) - Structures Passing Structures to Functions - Self-Referential Structures – Unions - Opening Data File - Creating a Data File - Processing a Data File - Unformatted Data	CO5

TOTAL: 45 PERIODS

TEXT BOOKS

1. Byron Gottfried - Schaum's Outline of Programming with C, 2nd Edition, McGraw-Hill, 1996.

REFERENCE BOOKS

- 1. The C Programming Language by Brian Kernighan and Dennis Ritchie 2nd Edition.
- 2. Let Us C Yashavant kanetkar, BPB

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to							
CO1	Identify situations where computational methods and computers would be useful.							
CO2	Demonstrate the use of operators, input and output statements and control statements							
CO3	Identify solution to a problem and apply control structures and user defined functions for solving the problem							
CO4	Demonstrate the use of numeric arrays and pointers							
CO5	Demonstrate the ability to design creative solutions to real life problems faced by the industry.							

OME106	TESTING OF MATERIALS	L	Т	Р	С		
		3	0	0	3		
OBJECTIVES							
	e various material testing methods and standards.						
'	e various mechanical testing and material characterization						
	the various destructive and non-destructive testing methods of mar pplications.	teria	ls a	nd	its		
UNIT I	INTRODUCTION TO MATERIALS TESTING				9		
Overview of r	naterials: Classification of material testing, Purpose of testing, Sele	ctio	n of		.1		
material, Development of testing, Testing organizations and its committee, Testing standards, C							
Result Analysis	s, Advantages of testing.						
UNIT II	MECHANICAL TESTING				9		
Introduction to	mechanical testing: Hardness test (Vickers, Brinell, Rockwell), Tens	sile	test.				
	zod, Charpy) - Principles, Techniques, Methods, Advantages and Lim				:02		
Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods,							
	nd Limitations, Applications.		,				
UNIT III	NON DESTRUCTIVE TESTING			1	9		
Visual inspecti	on, Liquid penetrant test, Magnetic particle test, Thermography test – Pr	rinci	oles,				
Techniques, A	dvantages and Limitations, Applications. Radiographic test, Eddy curr	ent	test,		:03		
Ultrasonic tes	st, Acoustic emission- Principles, Techniques, Methods, Advantag	jes	and	-	,U3		
Limitations, Ap	plications.						
UNIT IV	MATERIAL CHARACTERIZATION TESTING			-	9		
Macroscopic a	nd Microscopic observations, Optical and Electron microscopy (SEM and	d TE	M) -				
Principles, Ty	pes, Advantages and Limitations, Applications. Diffraction Tec	hniq	ues,		-04		
Spectroscopic	Techniques, Electrical and Magnetic Techniques- Principles, Types, Adv	/anta	ages	'	04		
and Limitations	s, Applications.						
UNIT V	OTHER TESTING			1	9		
Thermal Testi	ng: Differential Scanning Calorimetry, Differential Thermal Analysis.	The	mo-		1		
	d Dynamic mechanical analysis: Principles, Advantages, Applications. C						
	y Fluorescence, Elemental Analysis by Inductively Coupled Plasma				O5		
_	stroscopy and Plasma-Mass Spectrometry.	•					
	TOTAL	. : 4	5 PE	RIC	DS		

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.
- 3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.
- 4. Suryanarayana A. V. K., "Testing of metallic materials", 2nd Edition, BS publications, 2018

REFERENCE BOOKS

1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.

- 2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.
- 3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986. Publishing, 1998.

COURSE OUTCOMES

CO1	Identify various materials, different types of material testing, material testing standards and organizations, characterization and techniques
CO2	Identify various mechanical testing and its procedure with application for industrial use.
CO3	understand the various non-destructive testing techniques with application for industrial use.
CO4	analyze the surface and elemental behavior of various materials using different material
C04	characterization techniques.
CO5	understand the thermal and chemical behavior of various materials by special testing
003	techniques.

	MAPPING OF COs WITH POs AND PSOs														
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	2	2	1	2	1	1	1	1	3	2	1	1
CO2	3	2	2	1	2	1	2	1	1	1	2	3	2	2	2
CO3	3	2	1	2	2	1	2	1	1	1	2	3	2	1	1
CO4	3	1	2	2	2	1	2	1	1	1	1	3	2	2	2
CO5	3	2	2	2	2	1	2	1	1	1	1	3	2	1	1

AD1001	CONSTITUTION OF INDIA	L	T	Р	С
		2	0	0	0

OBJECTIVES

- ❖ Teach history and philosophy of Indian Constitution.
- ❖ Describe the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- Summarize powers and functions of Indian government.
- Explain emergency rule.
- Explain structure and functions of local administration.

+ Explain	Structure and functions of local administration.							
UNIT I	INTRODUCTION	9						
History of Mak	king of the Indian Constitution-Drafting Committee- (Composition & Working) -	CO1						
Philosophy of t	he Indian Constitution-Preamble-Salient Features							
UNIT II	CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES	9						
Fundamental	Rights-Right to Equality-Right to Freedom-Right against Exploitation Right to							
Freedom of Re	eligion-Cultural and Educational Rights-Right to Constitutional Remedies Directive	CO2						
Principles of St	tate Policy-Fundamental Duties							
UNIT III	ORGANS OF GOVERNANCE	9						
Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-Executive								
President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges,								
Qualifications I	Powers and Functions							
UNIT IV	EMERGENCY PROVISIONS	9						
Emergency Pro	ovisions - National Emergency, President Rule, Financial Emergency	CO4						
UNIT V	LOCAL ADMINISTRATION	9						
District's Admir	nistration head- Role and Importance-Municipalities- Introduction- Mayor and role	.						
of Elected Rep	presentative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI- Zila							
Pachayat-Elec	ted officials and their roles- CEO ZilaPachayat- Position and role-Block	CO5						
levelOrganizati	ional Hierarchy (Different departments)-Village level- Role of Elected and							
Appointed office	sials-Importance of grass root democracy							
	TOTAL : 45 PER	RIODS						

TEXT BOOKS

- 1. Basu D D, Introduction to the Constitution of India, Lexis Nexis, 2015.
- 2. Busi S N, Ambedkar B R framing of Indian Constitution, 1st Edition, 2015.
- 3. Jain M P, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. The Constitution of India (Bare Act), Government Publication, 1950

COURSE OUTCOMES

CO1	Able to understand history and philosophy of Indian Constitution.
CO2	Able to understand the premises informing the twin themes of liberty and freedom
CO3	from a civil rights perspective.
CO4	Able to understand powers and functions of Indian government.

CO5	Able to	unde	rstand	d eme	rgenc	y rule									
	MAPPING OF COs WITH POs AND PSOs														
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-

AD1002	VALUE EDUCATION	L	Т	Р	С
		2	0	0	0
OBJECTIVES					
Develop	knowledge of self-development				
Explain	the importance of Human values				
Develop	the overall personality through value education				
Overcor	me the self destructive habits with value education				
Interpre	t social empowerment with value education				
UNIT I	INTRODUCTION TO VALUE EDUCATION				9
Values and sel	f-development -Social values and individual attitudes, Work ethics, India	an v	ision		01
of humanism, N	Noral and non-moral valuation, Standards and principles, Value judgmer	nts			,01
UNIT II	IMPORTANCE OF VALUES				9
Importance of o	cultivation of values, Sense of duty, Devotion, Self-reliance, Confidence,				
Concentration,	Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National	al U	nity,	C	02
Patriotism, Lov	e for nature, Discipline				
UNIT III	INFLUENCE OF VALUE EDUCATION				9
Personality and	Behaviour development - Soul and Scientific attitude. Positive Thinking,	Inte	grity		
and discipline,	Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, D	Digni	ty of	_	03
labour, Univers	al brotherhood and religious tolerance, True friendship Happiness Vs s	uffe	ring,		,03
love for truth.					
UNIT IV	REINCARNATION THROUGH VALUE EDUCATION				9
Aware of self-or	destructive habits, Association and Cooperation, Doing best for saving	g na	ature		
Character and	Competence -Holy books vs Blind faith, Self-management and Good	d he	alth,	C	04
Science of rein	carnation				
UNIT V	VALUE EDUCATION IN SOCIAL EMPOWERMENT				9
Equality, Non	violence, Humility, Role of Women, All religions and same message,M	ind	your		05
Mind, Self-cont	rol, Honesty, Studying effectively				,03
	TOTAL	. : 4	5 PE	RIO	DS
REFERENCES					

Chakroborty , S.K. "Values and Ethics for organizations Theory and practice", Oxford
 University Press ,New Delhi

COURSE OUTCOMES

-	
CO1	Gain knowledge of self-development
CO2	Learn the importance of Human values
CO3	Develop the overall personality through value education
CO4	Overcome the self destructive habits with value education
CO5	Interpret social empowerment with value education
	MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2	PSO3
CO1	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-
CO3	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-
CO4	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-

AD1003	PEDAGOGY STUDIES	L	T	Р	С
		2	0	0	0
OB IECTIVES					

OBJECTIVES

- Understand the methodology of pedagogy.
- Compare pedagogical practices used by teachers in formal and informal classrooms in developing countries.
- ❖ Infer how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
- Illustrate the factors necessary for professional development.
- Identify the Research gaps in pedagogy.

w identily	tile Research gaps in pedagogy.	
UNIT I	INTRODUCTION AND METHODOLOGY	9
Aims and ratio	onale, Policy background, Conceptual framework and terminology - Theories of	
learning, Curr	iculum, Teacher education - Conceptual framework, Research questions -	CO1
Overview of m	ethodology and Searching.	
UNIT II	THEMATIC OVERVIEW	9
Pedagogical p	practices are being used by teachers in formal and informal classrooms in	CO2
developing cou	untries - Curriculum, Teacher education.	COZ
UNIT III	EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES	9
Methodology f	or the in depth stage: quality assessment of included studies - How can teacher	•
education (cur	riculum and practicum) and the school curriculum and guidance materials best	
support effective	ve pedagogy? - Theory of change - Strength and nature of the body of evidence	CO3
for effective pe	dagogical practices - Pedagogic theory and pedagogical approaches - Teachers'	
attitudes and b	eliefs and Pedagogic strategies.	
UNIT IV	PROFESSIONAL DEVELOPMENT	9
Professional d	evelopment: alignment with classroom practices and follow up support - Peer	•
support - Supp	port from the head teacher and the community - Curriculum and assessment -	CO4
Barriers to lear	ning: limited resources and large class sizes	
UNIT V	RESEARCH GAPS AND FUTURE DIRECTIONS	9
Research desi	gn – Contexts – Pedagogy - Teacher education - Curriculum and assessment -	CO5
Dissemination	and research impact.	003
	TOTAL : 45 PER	RIODS

REFERENCES

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the methodology of pedagogy
CO2	Understand Pedagogical practices used by teachers in formal and informal classrooms in
	developing countries.
CO3	Find how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
	guidance materials best support effective pedagogy.
CO4	
CO5	Identify the Research gaps in pedagogy.

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-

AD1004	STRESS MANAGEMENT BY YOGA	L	T	Р	С
		2	0	0	0

OBJECTIVES

- ❖ Develop healthy mind in a healthy body thus improving social health also improve efficiency
- Invent Do's and Don'ts in life through Yam
- Categorize Do's and Don'ts in life through Niyam
- Develop a healthy mind and body through Yoga Asanas
- Invent breathing techniques through Pranayama

UNIT I	INTRODUCTION TO YOGA		9
Definitions of E	ight parts of yoga. (Ashtanga)	(CO1
UNIT II	YAM		9
Do`s and Don'	ts in life. Shaucha, Santosh, tapa, swadhyay, ishwarpranidhan	(CO2
UNIT III	NIYAM		9
Do`s and don't	s in life. Ahinsa, satya, astheya, bramhacharya and aparigraha	(CO3
UNIT IV	ASAN		9
Various yog po	ses and their benefits for mind & body	(CO4
UNIT V	PRANAYAM		9
Regularization	of breathing techniques and its effects-Types of pranayam	(CO5
		TOTAL : 45 PERIO	ODS

REFERENCES

- "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
- 2. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Develop healthy mind in a healthy body thus improving social health also improve efficiency
CO2	Learn Do's and Don't's in life through Yam
CO3	Learn Do's and Don't's in life through Niyam
CO4	Develop a healthy mind and body through Yog Asans
CO5	Learn breathing techniques through Pranayam

MAPPING OF COS WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO3	-	•	-	1	1	-	1	1	-	-	-	1	-	-	-

CO4	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-

AD1005													
	ENLIGHTENMENT SKILLS												
		2	0	0	0								
OBJECTIVES													
Develop	b basic personality skills holistically												
Develop	deep personality skills holistically to achieve happy goals												
Rewrite	the responsibilities												
Refram	e a person with stable mind												
UNIT I	NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - I				9								
Verses- 19,20	21,22 (wisdom) - Verses- 29,31,32 (pride & heroism) - Verses- 26,2	28,6	3,65		:01								
(virtue)				'	,01								
UNIT II	NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - II			,	9								
Verses- 52,53,	59 (dont's) - Verses- 71,73,75,78 (do's)			С	02								
UNIT III	ORGANS OF GOVERNANCE				9								
Shrimad Bhag	wad Geeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21,	, 27	, 35										
Chapter6-Vers	es 5,13,17,23, 35 - Chapter 18-Verses 45, 46, 48			'	:O3								
UNIT IV	EMERGENCY PROVISIONS				9								
Statements of	basic knowledge - Shrimad Bhagwad Geeta: Chapter2-Verses 56,	62	, 68		•								
Chapter12 -Ve	rses 13, 14, 15, 16,17, 18			'	:04								
UNIT V	LOCAL ADMINISTRATION				9								
Chapter2-Vers	es 17, Chapter 3-Verses 36,37,42 - Chapter 4-Verses 18, 38,39 Chap	oter	18 –		:05								
Verses 37,38,6	33			'	,03								
	TOTAL	. : 4	5 PE	RIO	DS								

REFERENCES

- 1. Gopinath,Rashtriya Sanskrit Sansthanam P, Bhartrihari's ThreeSatakam , Niti-sringarvairagya, New Delhi,2010
- 2. Swami Swarupananda, Srimad Bhagavad Gita, Advaita Ashram, Publication Department, Kolkata,2016.

COURSE OUTCOMES

CO2	To develop deep personality skills holistically to achieve happy goals
CO3	To rewrite the responsibilities
CO4	To reframe a person with stable mind, pleasing personality and determination
CO5	To awaken wisdom in students
	MAPPING OF COS WITH POS AND PSOS

COs	DDOCDAM OUTCOMES (DOc)	PROGRAM SPECIFIC
COS	PROGRAM OUTCOMES (POs)	OUTCOMES (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO3	-	-	-	-	-	-	1	-	1	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-

AD1006	UNNAT BHARAT ABHIYAN	L	T	Р	С
		2	0	0	0
OBJECTIVES					
To eng	age the students in understanding rural realities				
To ider	itify and select existing innovative technologies, enable customization of t	tech	nolo	gies	s, o
devise	implementation method for innovative solutions, as per the local needs.				
To lev	erage the knowledge base of the institutions to devise processe	s f	or e	effec	tive
implem	entation of various government programmes				
To und	erstand causes for rural distress and poverty and explore solutions for the	e sa	me		
To ap	ply classroom knowledge of courses to field realities and thereby imp	orov	e qu	ualit	/ C
learning	g				
UNIT I	QUALITY OF RURAL LIFE IN VILLAGES AND UNNAT BHARAT ABI	HIY	AN		,
Introduction to	Unnat Bharat Abhiyan - concept, scope and objectives, rural life, rural	soc	ciety,		
cast and gene	der relations, rural values with respect to community, nature and res	sou	rces,		
elaboration of	"Soul of India lies in villages" – (Gandhi Ji), Rural infrastructure, problems	s in	rural	۱ ,	O.
area.				'	,0
Assignment: P	repare a map (Physical, visual and digital) of the village you visited and	writ	e an	1	
essay about in	ter-family relation in that village.				
UNIT II	RURAL ECONOMY AND LIVELIHOOD				(
Agriculture, fai	ming, land ownership pattern, water management, animal husbandry, n	non-	farm	1	
livelihoods and	l artisans, rural entrepreneurs, rural market .			1	
Assignment: I	Describe your analysis of rural household economy, it's challenges and	pos	sible	۱ ۱	,0,
pathways to a	ddress them. Group discussion in class- (4) Field visit 3.				
UNIT III	RURAL INSTITUTIONS				,
History of Rura	al Development, Traditional rural organizations, Self Help Groups, Gram	n Sv	varaj	İ	
and 3- Tier Pa	ınchayat Raj Institutions (Gram Sabha, Gram Panchayat, Standing Com	nmit	tee),		
local civil socie	ety, local administration. Introduction to Constitution, Constitutional Amer	ndm	ents		o
in Panchayati	Raj – Fundamental Rights and Directive Principles.			`	,0,
Assignment: P	anchayati Raj institutions in villages? What would you suggest to impro	ove	their		
effectiveness?	Present a case study (written or audio-visual). Field Visit – 4.				
UNIT IV	RURAL DEVELOPMENT PROGRAMMES				,
National progr	ammes - Sarva Shiksha Abhiyan, Beti Bachao, Beti Padhao, Ayushman	Bh	arat,		•
Swatchh Bhara	at, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning	, NF	RLM,		
MNREGA, etc.				,	CO
Written Assign	ment: Describe the benefits received and challenges faced in the deliver	y of	one	٠ ١	, 0
of these progra	ammes in the rural community, give suggestions about improving implem	enta	ation		
of the program	me for the rural poor.				
					т

UNIT V

FIELD WORK

Each student selects one programme for field visit Field based practical activities:

- Interaction with SHG women members, and study of their functions and challenges; planning for their skill building and livelihood activities
- Visit MGNREGS project sites, interact with beneficiaries and interview functionaries at the work site
- Field visit to Swachh Bharat project sites, conduct analysis and initiate problem solving measures
- Conduct Mission Antyodaya surveys to support under Gram Panchayat Development Plan(GPDP)
- Interactive community exercise with local leaders, panchayat functionaries, grass-root officials and local institutions regarding village development plan preparation and resource mobilization
- Visit Rural Schools I mid-day meal centres, study Academic and infrastructural resources and gaps
- Participate in Gram Sabha meetings, and study community participation
- Associate with Social audit exercises at the Gram Panchayat level, and interact with programme beneficiaries
- Attend Parent Teacher Association meetings, and interview school drop outs
- Visit local Anganwadi Centre and observe the services being provided
- Visit local NGOs, civil society organisations and interact with their staff and beneficiaries.
- Organize awareness programmes, health camps, Disability camps and cleanliness camps o Conduct soil health test, drinking water analysis, energy use and fuel efficiency surveys
- Raise understanding of people's impacts of climate change, building up community's disaster preparedness
- Organise orientation programmes for farmers regarding organic cultivation, rational use of irrigation and fertilizers and promotion of traditional species of crops and plants Formation of committees for common property resource management, village pond maintenance and fishing.

TOTAL: 45 PERIODS

TEXT BOOKS

- Singh, Katar, Rural Development Principles, Policies and Management, Sage Publications, New Delhi, 2015
- 2. A Hand book on Village Panchayat Administration, Rajiv Gandhi Chair for Panchayati Raj Studies, 2002
- 3. United Nations, Sustainable Development Goals, 2015 un.org/sdgs

REFERENCES

- 1. M.P.Boraian, Best Practices in Rural Development, Shanlax Publishers
- 2. Unnat Bharat Abhiyan Website: www.unnatbharatabhiyan.gov.in

COURSE OUTCOMES

Upon completion of the course, students will be

CO1	Able to understand of rural life, culture and social realities
CO2	Able to understand the concept of measurement by comparison or balance of parameters.

CO₅

CO3	Able to	devel	lop a	sense	of en	npath	y and	bond	s of m	nutualit	y with	local c	ommuni	ty	
CO4	Able to	appre	eciate	signif	icant	contri	butior	ns of I	ocal c	ommu	nities t	to India	an societ	y and ec	onomy
CO5	Learne	ed to va	alue tl	he loc	al kno	owled	ge an	d wisc	dom c	of the c	ommu	nity			
	MAPPING OF COs WITH POs AND PSOs														
	PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC														
COs					OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

AD1007	ESSENCE OF INDIAN KNOWLEDGE TRADITION	L	T	Р	С					
		2	0	0	0					
OBJECTIVES										
 Get a knowledge about Indian Culture 										
Know Indian Languages and Literature religion and philosophy and the fine arts in India										
 Explore the Science and Scientists of Ancient, Medieval and Modern India 										
Unders	tand education systems in India									
UNIT I	INTRODUCTION TO CULTURE				9					
Culture, civiliza	ation, culture and heritage, general characteristics of culture, importance c	of cu	lture		:01					
in human litera	ture, Indian Culture, Ancient India, Medieval India, Modern India			`	,01					
UNIT II	INDIAN LANGUAGES AND LITERATURE									
Indian Langua	ages and Literature – I: Languages and Literature of South India, -	– In	dian		:02					
languages and	l Literature – II: Northern Indian Languages & Literature			`	,02					
UNIT III	RELIGION AND PHILOSOPHY				9					
Major religions	practiced in India and Understanding their Philosophy – religious move	men	ts in		:03					
Modern India (Selected movements only)			`	,03					
UNIT IV	FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING)				9					
Indian Paintin	g, Indian handicrafts, Music, divisions of Indian classic music, moder	n In	dian		•					
music, Dance	and Drama, Indian Architecture (ancient, medieval and modern), Scie	nce	and	C	04					
Technology in	India, development of science in ancient, medieval and modern India									
UNIT V	EDUCATION SYSTEM IN INDIA				9					
Education in ancient, medieval and modern India, aims of education, subjects, languages,										
Science and Scientists of Ancient India, Science and Scientists of Medieval India, Scientists of C										
Modern India										
	TOTAL : 45 PER									

REFERENCES

- 1. Kapil Kapoor, "Text and Interpretation: The India Tradition", ISBN: 81246033375, 2005
- 2. "Science in Samskrit", Samskrita Bharti Publisher, ISBN 13: 978-8187276333, 2007
- 3. NCERT, "Position paper on Arts, Music, Dance and Theatre", ISBN 81-7450 494-X, 200
- 4. Narain, "Examinations in ancient India", Arya Book Depot, 1993
- 5. Satya Prakash, "Founders of Sciences in Ancient India", Vijay Kumar Publisher, 1989
- 6. M. Hiriyanna, "Essentials of Indian Philosophy", Motilal Banarsidass Publishers, ISBN 13: 978-8120810990, 2014

COURSE OUTCOMES

CO1	Understand philosophy of Indian culture.
CO2	Distinguish the Indian languages and literature.
CO3	Learn the philosophy of ancient, medieval and modern India.
CO4	Acquire the information about the fine arts in India.

CO5	Under	Understand education systems in India															
	MAPPING OF COs WITH POS AND PSOS																
COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		

AD1008	SANGA TAMIL LITERATURE APPRECIATION	L	T	Р	С
		2	0	0	0

OBJECTIVES

The main learning objective of this course is to make the students an appreciation for:

- Introduction to Sanga Tamil Literature.
- ❖ 'Agathinai' and 'Purathinai' in SangaTamil Literature.
- 'Attruppadai' in SangaTamil Literature.
- 'Puranaanuru' in SangaTamil Literature.
- 'Pathitrupaththu' in SangaTamil Literature.

+ raunu	Tathitapathina in Cangaranii Elicratare.									
UNIT I	SANGA TAMIL LITERATURE – AN INTRODUCTION	9								
Introduction to	Tamil Sangam-History of Tamil Three Sangams-Introduction to Tamil Sangam	-								
Literature-Spe	cial Branches in Tamil Sangam Literature- Tamil Sangam Literature's Grammar	CO1								
Tamil Sangam Literature's parables.										
UNIT II 'AGATHINAI' AND 'PURATHINAI'										
Tholkappiyar's	Tholkappiyar's Meaningful Verses–Three literature materials–Agathinai's message- History of									
Culture from Agathinai – Purathinai – Classification – Message to Society from Purathinai.										
UNIT III	ATTRUPPADAI'									
Attruppadai Li	terature-Attruppadaiin'Puranaanuru'-Attruppadaiin'Pathitrupaththu'-Attruppadaiin	CO3								
'Paththupaattu		COS								
UNIT IV	'PURANAANURU'	9								
Puranaanuru o	n Good Administration, Ruler and Subjects–Emotion & its Effect in Puranaanuru.	CO4								
UNIT V	'PATHITRUPATHTHU'	9								
Pathitrupaththu	Pathitrupaththuin'Ettuthogai'–Pathitrupaththu'sParables–Tamildynasty: Valor, Administration,									
Charity in Path	itrupaththu- Message to Society from Pathitrupaththu.	CO5								
TOTAL : 45 PERIO										

TEXT BOOKS

- 1. Sivaraja Pillai, The Chronology ofthe Early Tamils, Sagwan Press, 2018.
- 2. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002.
- 3. Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Academic Pub,1997.
- 4. GeorgeL. Hart, Poetsof the Tamil Anthologies: Ancient Poemsof Love and War, Princeton University Press, 2015.
- XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical Tamil poetry, Asia Pub.House, 1967

COURSE OUTCOMES

CC	D1	Appreciate and apply the messages in Sanga Tamil Literature in their life.
CC) 2	Differentiate 'Agathinai' and 'Purathinai'in their personal and societal life.
CC	Э3	Appreciate and apply the messages in Attruppadai in their personal and societal life.

CO4	Appre	Appreciate and apply the messages in Puranaanuru in their personal and societal life.															
CO5	Appre	Appreciate and apply the messages in' Pathitrupaththu' in their personal and societal life.															
	MAPPING OF COs WITH POS AND PSOS																
COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-		
CO2	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-		
CO3	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-		
CO4	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-		
CO5	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-		

OPEN ELECTIVES OFFERED TO OTHER DEPARTMENTS

OCE101	AIR POLLUTION AND CONTROL L	Т	Р	С					
	(COMMON TO BIOTECH, EEE, EIE, MECH) 3	0	0	3					
OBJECTIVES									
To impart knowledge on the principle and design of particulate/ gaseous air pollutant ar									
emergi	ng trends.								
To acq	uaint the students with the basics of selection of control equipment.								
To learn about indoor air quality control.									
UNIT I	AIR QUALITY MONITORING			9					
Structure and	composition of Atmosphere - Definition, Scope and Scales of Air Polluti	on –							
Sources and	classification of air pollutants and their effect on human health, vegeta	ation,	C	:01					
animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards –									
Composition of	f Particulate and Gaseous Pollutants.								
UNIT II EFFECT OF ATMOSPHERIC DISPERSION									
Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind									
profiles and sta	ack plume patterns- Atmospheric Diffusion Theories – Dispersion models, P	lume	С	02					
rise									
UNIT III	PARTICULATE CONTAMINANTS			9					
Gas Particle In	teraction – Working principle, Gravity Separators, Centrifugal separators Fal	bric							
filters, Particula	ate Scrubbers, Electrostatic Precipitators – Operational Considerations- Fact	tors	C	О3					
affecting Selec	ction of Control Equipment.								
UNIT IV	GASEOUS CONTAMINANTS			9					
Working princi	ple, Adsorption, condensation, Incineration, Bio scrubbers, Bio filters – Pro	cess							
control and M	onitoring - Operational Considerations- Factors affecting Selection of Co	ontrol	C	04					
Equipment –CO2 capturing.									
UNIT V	INDOOR AIR QUALITY MONITORING			9					
Sources, types	and control of indoor air pollutants, sick building syndrome types -Sources	and		O5					
Effects of Noise Pollution– Standards–Control and Preventive measures.									
TOTAL : 45 PERI									

TEXT BOOKS

- Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 2. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 1995.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002

REFERENCE BOOKS

1. David H.F. Liu, Bela G. Liptak "Air Pollution", Lweis Publishers, 2000.

- 2. Arthur C.Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc.,2000

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the chemistry of atmosphere, characterize the air pollutants, know the effects of
COT	air pollution, identify the criteria air pollutants and know about NAAQS
CO2	Apply the knowledge of mathematics and science fundamentals to understand the concept of
002	meteorology, air pollution dispersion and Gaussian plume dispersion model
CO3	Select suitable method and design the particulate pollutant control equipment
CO4	Select appropriate method for control of gaseous pollutant by due consideration of sources of
004	emission
COE	Understand the source of indoor air pollution, effects and control methods as well as to identify
CO5	the source of noise, and select suitable method for control of noise pollution

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)															
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO1 PSO2 PSO3					
CO1	2	1	0	0	0	0	0	0	0	0	0	0	1	2	3				
CO2	2	1	0	0	0	0	0	0	0	0	0	0	1	2	3				
CO3	3	2	0	0	0	1	0	0	0	0	0	0	2	3	3				
CO4	3	2	0	0	0	1	0	0	0	0	0	0	2	3	3				
CO5	3	2	0	0	0	1	0	0	0	0	0	0	2	3	3				

OCE102	INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM	L	Т	Р	С			
	(COMMON TO AIDS, AIML, CSE, ECE, IT)	3	0	0	3			
OBJECTIVES			ı					
To intro	oduce the fundamentals and components of Geographic Information Syst	em						
To prov	vide details of spatial data structures and input, management and output							
proces	ses.							
UNIT I	FUNDAMENTALS OF GIS				9			
Introduction to	GIS - Basic spatial concepts - Coordinate Systems - GIS and Info	orma	ation					
Systems - De	finitions – History of GIS - Components of a GIS – Hardware, Softwar	e, D	ata,					
People, Metho	ods - Proprietary and open source Software - Types of data - Spatial,	Attri	bute	(CO			
data- types of	attributes – scales/ levels of measurements.							
UNIT II	SPATIAL DATA MODELS				9			
Database Stru	uctures – Relational, Object Oriented – ER diagram - spatial data m	node	ls –					
Raster Data S	tructures – Raster Data Compression - Vector Data Structures - Raster v	s Ve	ector		02			
Models- TIN a	nd GRID data models - OGC standards - Data Quality.							
UNIT III	DATA INPUT AND TOPOLOGY				9			
Scanner - Ra	ster Data Input – Raster Data File Formats – Vector Data Input –Di	gitis	er –					
Topology - A	djacency, connectivity and containment – Topological Consistency	rule	es –	·	o			
Attribute Data	linking – ODBC – GPS - Concept GPS based mapping.							
UNIT IV	DATA ANALYSIS				9			
Vector Data A	nalysis tools - Data Analysis tools - Network Analysis - Digital Education i	mod	els -					
3D data collec	tion and utilisation			C	CO			
UNIT V	APPLICATIONS				(
GIS Applicant	- Natural Resource Management - Engineering - Navigation - Vehicle	trac	king		CO:			
and fleet management - Marketing and Business applications - Case studies.								
	TOTAL	. : 4	5 PE	RIC	DS			
TEXT BOOKS	<u> </u>							
	· 							

- Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCE BOOKS

 Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

COURSE OUTCOMES

CO1	Have basic idea about the fundamentals of GIS.
CO2	Understand the types of data models.
CO3	Get knowledge about data input and topology.
CO4	Gain knowledge on data quality and standards.
CO5	Understand data management functions and data output

	MAPPING OF COs WITH POs AND PSOs														
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	1	-	2	1	-	-	-	-	-	-	1	2	2
CO2	2	1	2	2	3	1	-	-	-	-	-	-	2	3	2
CO3	2	1	2	2	3	1	-	-	-	-	-	-	2	1	2
CO4	2	1	2	-	3	1	-	-	-	-	-	-	2	2	1
CO5	2	-	2	-	3	1	-	-	-	-	-	-	3	2	2

OCE103	ENVIRONMENTAL IMPACT ASSESSMENT L T	Р	С						
	(COMMON CHEMICAL, MECHANICAL) 3 0	0	3						
OBJECTIVES									
To imp	art knowledge on Environmental management and Environmental Impact Assessn	nen	t.						
UNIT I	INTRODUCTION		9						
Impact of dev	elopment projects-EIA Notifications-Urbanization-Meaning- Activities involved-								
Effects on	environment-Environmental Impact Assessment(EIA)-Environmental Impact	С	01						
Statement(EIS	5).								
UNIT II	METHODOLOGIES		9						
Methods of El	A-Checklists-Matrices-Networks-Cost-benefit analysis-Analysis of alternatives								
 Uncertainty i 	n EIA.	С	02						
UNIT III	PREDICTION AND ASSESSMENT		9						
Assessment c	f Impact on land, water, air, social & cultural activities and on flora& Fauna-								
Mathematical	models-Public participation-SIA Judgment authorities-Rapid EIA.	С	O3						
UNIT IV	ENVIRONMENTAL MANAGEMENT PLAN		9						
Plan for mitiga	tion of adverse impact on environment-Options for mitigation of impact on water,		04						
air, land and on flora& fauna- Addressing the issues related to the Project Affected People									
UNIT V	CASE STUDIES		9						
EIA for infras	structure projects-Dams-Highways-Multi-storey Buildings-Water Supply and								
Drainage Proje	ects-Waste water treatment plants, STP.	C	O5						
	TOTAL : 45 PER	RIO	DS						

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi, 1996.
- Richard K. Morgan., "Environmental Impact Assessment" Kluwer Academic Publications, London, 2002

REFERENCE BOOKS

- 1. John G. Rauand David C Hooten (Ed)., "Environmental Impact Analysis Handbook", McGraw-Hill BookCompany, 1990.
- 2. "Environmental Assessment Sourcebook", Vol.I, II &III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol.I & II", Blackwell Science, 1999.

COURSE OUTCOMES

CO1	carry out scoping and screening of developmental projects for environmental and social assessments								
CO2	explain different methodologies for environmental impact prediction and assessment								
CO3	plan environmental impact assessments and environmental management plans								
CO4	evaluate environmental impact assessment reports								
CO5	understand the Membrane Applications.								
	MAPPING OF COs WITH POs AND PSOs								

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	2	1	2	2	4	2	1	1	1	2	1	-
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	-
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	-
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	-
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	-

OCE104	GREEN BUILDING DESIGN L T	Р	С								
	3 0	0	3								
OBJECTIVES											
The	course aims to develop skills of the students in the area of Civil Engineering with										
emp	hasis in environmental implications of buildings and comforts in building										
This	will enable the students to perform calculations pertaining to processes and operations	tior	ıs.								
UNIT I	ENVIRONMENTAL IMPLICATIONS OF BUILDINGS		9								
Energy use,	carbon emissions, water use, waste disposal; Building materials: sources,										
methods of pro	oduction and environmental Implications. Embodied Energy in Building Materials:	С	01								
Transportation	Energy for Building Materials; Maintenance Energy for Buildings.										
UNIT II	IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF	F	9								
	BUILDINGS										
Framed Cons	truction, Masonry Construction. Resources for Building Materials, Alternative	_	02								
concepts. Red	ycling of Industrial and Buildings Wastes. Biomass Resources for buildings.	٦	U2								
UNIT III	COMFORTS IN BUILDING		9								
Thermal Com	fort in Buildings- Issues; Heat Transfer Characteristic of Building Materials and										
Building Tech	iniques. Incidence of Solar Heat on Buildings-Implications of Geographical	С	O 3								
Locations											
UNIT IV	UTILITY OF SOLAR ENERGY IN BUILDINGS		9								
Utility of Solar	energy in buildings concepts of Solar Passive Cooling and Heating of Buildings.	_									
Low Energy C	ooling. Case studies of Solar Passive Cooled and Heated Buildings.	CO									
UNIT V	GREEN COMPOSITES FOR BUILDINGS		9								
Concepts of 0	Green Composites. Water Utilization in Buildings, Low Energy Approaches to										
Water Manag	ement. Management of Solid Wastes. Management of Sullage Water and	С	O 5								
Sewage. Urba	n Environment and Green Buildings. Green Cover and Built Environment.										
TOTAL: 45 PERI											

- 1. K.S.Jagadish, B. U. Venkataramareddy and K. S. Nanjundarao. Alternative Building Materials and Technologies. New Age International, 2007.
- 2. Low Energy Cooling for Sustainable Buildings. John Wiley and Sons Ltd, 2009.
- 3. Sustainable Building Design Manual. Vol 1 and 2, Teri, New Delhi, 2004.

REFERENCE BOOKS

- 1. Osman Attmann Green Architecture Advanced Technologies and Materials. McGraw Hill, 2010.
- 2. Jerry Yudelson Green building Through Integrated Design. McGraw Hill, 2009.
- 3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

COURSE OUTCOMES

CO1	understand core building science fundamentals
CO2	perform some building sustainability concepts
CO3	understand energy efficiency in relation to cost performance, ROI, etc
CO4	understand and perform some building performance testing and be exposed to different

	agenci	agencies involved in the testing.																
CO5	unders	understand and perform some weatherization fundamentals.																
	MAPPING OF COs WITH POs AND PSOs																	
					PROGRAM SPECIFIC													
COs		PROGRAM OUTCOMES (POS)													OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3			
CO2	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3			
CO3	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3			
CO4	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3			

CO5